Palensky, Peter
Optimizing Electric Vehicles Charging using Large Language Models and Graph Neural Networks
Orfanoudakis, Stavros, Palensky, Peter, Vergara, Pedro P.
Maintaining grid stability amid widespread electric vehicle (EV) adoption is vital for sustainable transportation. Traditional optimization methods and Reinforcement Learning (RL) approaches often struggle with the high dimensionality and dynamic nature of real-time EV charging, leading to sub-optimal solutions. To address these challenges, this study demonstrates that combining Large Language Models (LLMs), for sequence modeling, with Graph Neural Networks (GNNs), for relational information extraction, not only outperforms conventional EV smart charging methods, but also paves the way for entirely new research directions and innovative solutions.
GNN-DT: Graph Neural Network Enhanced Decision Transformer for Efficient Optimization in Dynamic Environments
Orfanoudakis, Stavros, Panda, Nanda Kishor, Palensky, Peter, Vergara, Pedro P.
Reinforcement Learning (RL) methods used for solving real-world optimization problems often involve dynamic state-action spaces, larger scale, and sparse rewards, leading to significant challenges in convergence, scalability, and efficient exploration of the solution space. This study introduces GNN-DT, a novel Decision Transformer (DT) architecture that integrates Graph Neural Network (GNN) embedders with a novel residual connection between input and output tokens crucial for handling dynamic environments. By learning from previously collected trajectories, GNN-DT reduces dependence on accurate simulators and tackles the sparse rewards limitations of online RL algorithms. We evaluate GNN-DT on the complex electric vehicle (EV) charging optimization problem and prove that its performance is superior and requires significantly fewer training trajectories, thus improving sample efficiency compared to existing DT baselines. Furthermore, GNN-DT exhibits robust generalization to unseen environments and larger action spaces, addressing a critical gap in prior DT-based approaches
Adaptive Informed Deep Neural Networks for Power Flow Analysis
Kaseb, Zeynab, Orfanoudakis, Stavros, Vergara, Pedro P., Palensky, Peter
This study introduces PINN4PF, an end-to-end deep learning architecture for power flow (PF) analysis that effectively captures the nonlinear dynamics of large-scale modern power systems. The proposed neural network (NN) architecture consists of two important advancements in the training pipeline: (A) a double-head feed-forward NN that aligns with PF analysis, including an activation function that adjusts to active and reactive power consumption patterns, and (B) a physics-based loss function that partially incorporates power system topology information. The effectiveness of the proposed architecture is illustrated through 4-bus, 15-bus, 290-bus, and 2224-bus test systems and is evaluated against two baselines: a linear regression model (LR) and a black-box NN (MLP). The comparison is based on (i) generalization ability, (ii) robustness, (iii) impact of training dataset size on generalization ability, (iv) accuracy in approximating derived PF quantities (specifically line current, line active power, and line reactive power), and (v) scalability. Results demonstrate that PINN4PF outperforms both baselines across all test systems by up to two orders of magnitude not only in terms of direct criteria, e.g., generalization ability but also in terms of approximating derived physical quantities.
EnergyDiff: Universal Time-Series Energy Data Generation using Diffusion Models
Lin, Nan, Palensky, Peter, Vergara, Pedro P.
High-resolution time series data are crucial for operation and planning in energy systems such as electrical power systems and heating systems. However, due to data collection costs and privacy concerns, such data is often unavailable or insufficient for downstream tasks. Data synthesis is a potential solution for this data scarcity. With the recent development of generative AI, we propose EnergyDiff, a universal data generation framework for energy time series data. EnergyDiff builds on state-of-the-art denoising diffusion probabilistic models, utilizing a proposed denoising network dedicated to high-resolution time series data and introducing a novel Marginal Calibration technique. Our extensive experimental results demonstrate that EnergyDiff achieves significant improvement in capturing temporal dependencies and marginal distributions compared to baselines, particularly at the 1-minute resolution. Additionally, EnergyDiff consistently generates high-quality time series data across diverse energy domains, time resolutions, and at both customer and transformer levels with reduced computational need.
A Flow-Based Model for Conditional and Probabilistic Electricity Consumption Profile Generation and Prediction
Xia, Weijie, Wang, Chenguang, Palensky, Peter, Vergara, Pedro P.
Residential Load Profile (RLP) generation and prediction are critical for the operation and planning of distribution networks, especially as diverse low-carbon technologies (e.g., photovoltaic and electric vehicles) are increasingly adopted. This paper introduces a novel flow-based generative model, termed Full Convolutional Profile Flow (FCPFlow), which is uniquely designed for both conditional and unconditional RLP generation, and for probabilistic load forecasting. By introducing two new layers--the invertible linear layer and the invertible normalization layer--the proposed FCPFlow architecture shows three main advantages compared to traditional statistical and contemporary deep generative models: 1) it is well-suited for RLP generation under continuous conditions, such as varying weather and annual electricity consumption, 2) it demonstrates superior scalability in different datasets compared to traditional statistical models, and 3) it also demonstrates better modeling capabilities in capturing the complex correlation of RLPs compared with deep generative models.
EV2Gym: A Flexible V2G Simulator for EV Smart Charging Research and Benchmarking
Orfanoudakis, Stavros, Diaz-Londono, Cesar, Yฤฑlmaz, Yunus E., Palensky, Peter, Vergara, Pedro P.
As electric vehicle (EV) numbers rise, concerns about the capacity of current charging and power grid infrastructure grow, necessitating the development of smart charging solutions. While many smart charging simulators have been developed in recent years, only a few support the development of Reinforcement Learning (RL) algorithms in the form of a Gym environment, and those that do usually lack depth in modeling Vehicle-to-Grid (V2G) scenarios. To address the aforementioned issues, this paper introduces the EV2Gym, a realistic simulator platform for the development and assessment of small and large-scale smart charging algorithms within a standardized platform. The proposed simulator is populated with comprehensive EV, charging station, power transformer, and EV behavior models validated using real data. EV2Gym has a highly customizable interface empowering users to choose from pre-designed case studies or craft their own customized scenarios to suit their specific requirements. Moreover, it incorporates a diverse array of RL, mathematical programming, and heuristic algorithms to speed up the development and benchmarking of new solutions. By offering a unified and standardized platform, EV2Gym aims to provide researchers and practitioners with a robust environment for advancing and assessing smart charging algorithms.
Quantum Neural Networks for Power Flow Analysis
Kaseb, Zeynab, Moller, Matthias, Balducci, Giorgio Tosti, Palensky, Peter, Vergara, Pedro P.
This paper explores the potential application of quantum and hybrid quantum-classical neural networks in power flow analysis. Experiments are conducted using two small-size datasets based on the IEEE 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum, hybrid quantum-classical, and classical neural networks. The comparison is based on (i) generalization ability, (ii) robustness, (iii) training dataset size needed, (iv) training error. (v) training computational time, and (vi) training process stability. The results show that the developed quantum-classical neural network outperforms both quantum and classical neural networks, and hence can improve deep learning-based power flow analysis in the noisy-intermediate-scale quantum (NISQ) era.
Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective
Bรถlat, Kutay, Tindemans, Simon H., Palensky, Peter
Probabilistic modelling of power systems operation and planning processes depends on data-driven methods, which require sufficiently large datasets. When historical data lacks this, it is desired to model the underlying data generation mechanism as a probability distribution to assess the data quality and generate more data, if needed. Kernel density estimation (KDE) based models are popular choices for this task, but they fail to adapt to data regions with varying densities. In this paper, an adaptive KDE model is employed to circumvent this, where each kernel in the model has an individual bandwidth. The leave-one-out maximum log-likelihood (LOO-MLL) criterion is proposed to prevent the singular solutions that the regular MLL criterion gives rise to, and it is proven that LOO-MLL prevents these. Relying on this guaranteed robustness, the model is extended by assigning learnable weights to the kernels. In addition, a modified expectation-maximization algorithm is employed to accelerate the optimization speed reliably. The performance of the proposed method and models are exhibited on two power systems datasets using different statistical tests and by comparison with Gaussian mixture models. Results show that the proposed models have promising performance, in addition to their singularity prevention guarantees.
A Constraint Enforcement Deep Reinforcement Learning Framework for Optimal Energy Storage Systems Dispatch
Hou, Shengren, Duque, Edgar Mauricio Salazar, Palensky, Peter, Vergara, Pedro P.
The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to the uncertainty introduced by fluctuations in dynamic prices, demand consumption, and renewable-based energy generation. By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' stochastic nature. However, current DRL algorithms lack the capabilities to enforce operational constraints strictly, often even providing unfeasible control actions. To address this issue, we propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation. Firstly, the proposed framework trains an action-value function modeled using DNNs. Subsequently, this action-value function is formulated as a mixed-integer programming (MIP) formulation enabling the consideration of the environment's operational constraints. Comprehensive numerical simulations show the superior performance of the proposed MIP-DRL framework, effectively enforcing all constraints while delivering high-quality dispatch decisions when compared with state-of-the-art DRL algorithms and the optimal solution obtained with a perfect forecast of the stochastic variables.
Targeted Analysis of High-Risk States Using an Oriented Variational Autoencoder
Wang, Chenguang, Sharifnia, Ensieh, Tindemans, Simon H., Palensky, Peter
Variational autoencoder (VAE) neural networks can be trained to generate power system states that capture both marginal distribution and multivariate dependencies of historical data. The coordinates of the latent space codes of VAEs have been shown to correlate with conceptual features of the data, which can be leveraged to synthesize targeted data with desired features. However, the locations of the VAEs' latent space codes that correspond to specific properties are not constrained. Additionally, the generation of data with specific characteristics may require data with corresponding hard-to-get labels fed into the generative model for training. In this paper, to make data generation more controllable and efficient, an oriented variation autoencoder (OVAE) is proposed to constrain the link between latent space code and generated data in the form of a Spearman correlation, which provides increased control over the data synthesis process. On this basis, an importance sampling process is used to sample data in the latent space. Two cases are considered for testing the performance of the OVAE model: the data set is fully labeled with approximate information and the data set is incompletely labeled but with more accurate information. The experimental results show that, in both cases, the OVAE model correlates latent space codes with the generated data, and the efficiency of generating targeted samples is significantly improved.