Palaskar, Shruti
Multimodal Large Language Models with Fusion Low Rank Adaptation for Device Directed Speech Detection
Palaskar, Shruti, Rudovic, Oggi, Dharur, Sameer, Pesce, Florian, Krishna, Gautam, Sivaraman, Aswin, Berkowitz, Jack, Abdelaziz, Ahmed Hussen, Adya, Saurabh, Tewfik, Ahmed
Although Large Language Models (LLMs) have shown promise for human-like conversations, they are primarily pre-trained on text data. Incorporating audio or video improves performance, but collecting large-scale multimodal data and pre-training multimodal LLMs is challenging. To this end, we propose a Fusion Low Rank Adaptation (FLoRA) technique that efficiently adapts a pre-trained unimodal LLM to consume new, previously unseen modalities via low rank adaptation. For device-directed speech detection, using FLoRA, the multimodal LLM achieves 22% relative reduction in equal error rate (EER) over the text-only approach and attains performance parity with its full fine-tuning (FFT) counterpart while needing to tune only a fraction of its parameters. Furthermore, with the newly introduced adapter dropout, FLoRA is robust to missing data, improving over FFT by 20% lower EER and 56% lower false accept rate. The proposed approach scales well for model sizes from 16M to 3B parameters.
Speech Summarization using Restricted Self-Attention
Sharma, Roshan, Palaskar, Shruti, Black, Alan W, Metze, Florian
Speech summarization is typically performed by using a cascade of speech recognition and text summarization models. End-to-end modeling of speech summarization models is challenging due to memory and compute constraints arising from long input audio sequences. Recent work in document summarization has inspired methods to reduce the complexity of self-attentions, which enables transformer models to handle long sequences. In this work, we introduce a single model optimized end-to-end for speech summarization. We apply the restricted self-attention technique from text-based models to speech models to address the memory and compute constraints. We demonstrate that the proposed model learns to directly summarize speech for the How-2 corpus of instructional videos. The proposed end-to-end model outperforms the previously proposed cascaded model by 3 points absolute on ROUGE. Further, we consider the spoken language understanding task of predicting concepts from speech inputs and show that the proposed end-to-end model outperforms the cascade model by 4 points absolute F-1.
Learning from Multiview Correlations in Open-Domain Videos
Holzenberger, Nils, Palaskar, Shruti, Madhyastha, Pranava, Metze, Florian, Arora, Raman
An increasing number of datasets contain multiple views, such as video, sound and automatic captions. A basic challenge in representation learning is how to leverage multiple views to learn better representations. This is further complicated by the existence of a latent alignment between views, such as between speech and its transcription, and by the multitude of choices for the learning objective. We explore an advanced, correlation-based representation learning method on a 4-way parallel, multimodal dataset, and assess the quality of the learned representations on retrieval-based tasks. We show that the proposed approach produces rich representations that capture most of the information shared across views. Our best models for speech and textual modalities achieve retrieval rates from 70.7% to 96.9% on open-domain, user-generated instructional videos. This shows it is possible to learn reliable representations across disparate, unaligned and noisy modalities, and encourages using the proposed approach on larger datasets.