Pal, Umapada
A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition
Chakraborty, Ritabrata, Palaiahnakote, Shivakumara, Pal, Umapada, Liu, Cheng-Lin
Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.
d-Sketch: Improving Visual Fidelity of Sketch-to-Image Translation with Pretrained Latent Diffusion Models without Retraining
Roy, Prasun, Bhattacharya, Saumik, Ghosh, Subhankar, Pal, Umapada, Blumenstein, Michael
Structural guidance in an image-to-image translation allows intricate control over the shapes of synthesized images. Generating high-quality realistic images from user-specified rough hand-drawn sketches is one such task that aims to impose a structural constraint on the conditional generation process. While the premise is intriguing for numerous use cases of content creation and academic research, the problem becomes fundamentally challenging due to substantial ambiguities in freehand sketches. Furthermore, balancing the trade-off between shape consistency and realistic generation contributes to additional complexity in the process. Existing approaches based on Generative Adversarial Networks (GANs) generally utilize conditional GANs or GAN inversions, often requiring application-specific data and optimization objectives. The recent introduction of Denoising Diffusion Probabilistic Models (DDPMs) achieves a generational leap for low-level visual attributes in general image synthesis. However, directly retraining a large-scale diffusion model on a domain-specific subtask is often extremely difficult due to demanding computation costs and insufficient data. In this paper, we introduce a technique for sketch-to-image translation by exploiting the feature generalization capabilities of a large-scale diffusion model without retraining. In particular, we use a learnable lightweight mapping network to achieve latent feature translation from source to target domain. Experimental results demonstrate that the proposed method outperforms the existing techniques in qualitative and quantitative benchmarks, allowing high-resolution realistic image synthesis from rough hand-drawn sketches.
SVGCraft: Beyond Single Object Text-to-SVG Synthesis with Comprehensive Canvas Layout
Banerjee, Ayan, Mathur, Nityanand, Lladรณs, Josep, Pal, Umapada, Dutta, Anjan
Generating VectorArt from text prompts is a challenging vision task, requiring diverse yet realistic depictions of the seen as well as unseen entities. However, existing research has been mostly limited to the generation of single objects, rather than comprehensive scenes comprising multiple elements. In response, this work introduces SVGCraft, a novel end-to-end framework for the creation of vector graphics depicting entire scenes from textual descriptions. Utilizing a pre-trained LLM for layout generation from text prompts, this framework introduces a technique for producing masked latents in specified bounding boxes for accurate object placement. It introduces a fusion mechanism for integrating attention maps and employs a diffusion U-Net for coherent composition, speeding up the drawing process. The resulting SVG is optimized using a pre-trained encoder and LPIPS loss with opacity modulation to maximize similarity. Additionally, this work explores the potential of primitive shapes in facilitating canvas completion in constrained environments. Through both qualitative and quantitative assessments, SVGCraft is demonstrated to surpass prior works in abstraction, recognizability, and detail, as evidenced by its performance metrics (CLIP-T: 0.4563, Cosine Similarity: 0.6342, Confusion: 0.66, Aesthetic: 6.7832). The code will be available at github.com/SVGCraft.
GraphKD: Exploring Knowledge Distillation Towards Document Object Detection with Structured Graph Creation
Banerjee, Ayan, Biswas, Sanket, Lladรณs, Josep, Pal, Umapada
Object detection in documents is a key step to automate the structural elements identification process in a digital or scanned document through understanding the hierarchical structure and relationships between different elements. Large and complex models, while achieving high accuracy, can be computationally expensive and memory-intensive, making them impractical for deployment on resource constrained devices. Knowledge distillation allows us to create small and more efficient models that retain much of the performance of their larger counterparts. Here we present a graph-based knowledge distillation framework to correctly identify and localize the document objects in a document image. Here, we design a structured graph with nodes containing proposal-level features and edges representing the relationship between the different proposal regions. Also, to reduce text bias an adaptive node sampling strategy is designed to prune the weight distribution and put more weightage on non-text nodes. We encode the complete graph as a knowledge representation and transfer it from the teacher to the student through the proposed distillation loss by effectively capturing both local and global information concurrently. Extensive experimentation on competitive benchmarks demonstrates that the proposed framework outperforms the current state-of-the-art approaches. The code will be available at: github.com/ayanban011/GraphKD
SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation
Maity, Subhajit, Biswas, Sanket, Manna, Siladittya, Banerjee, Ayan, Lladรณs, Josep, Bhattacharya, Saumik, Pal, Umapada
Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: https://github.com/MaitySubhajit/SelfDocSeg
DySTreSS: Dynamically Scaled Temperature in Self-Supervised Contrastive Learning
Manna, Siladittya, Chattopadhyay, Soumitri, Dey, Rakesh, Bhattacharya, Saumik, Pal, Umapada
In contemporary self-supervised contrastive algorithms like SimCLR, MoCo, etc., the task of balancing attraction between two semantically similar samples and repulsion between two samples from different classes is primarily affected by the presence of hard negative samples. While the InfoNCE loss has been shown to impose penalties based on hardness, the temperature hyper-parameter is the key to regulating the penalties and the trade-off between uniformity and tolerance. In this work, we focus our attention to improve the performance of InfoNCE loss in SSL by studying the effect of temperature hyper-parameter values. We propose a cosine similarity-dependent temperature scaling function to effectively optimize the distribution of the samples in the feature space. We further analyze the uniformity and tolerance metrics to investigate the optimal regions in the cosine similarity space for better optimization. Additionally, we offer a comprehensive examination of the behavior of local and global structures in the feature space throughout the pre-training phase, as the temperature varies. Experimental evidence shows that the proposed framework outperforms or is at par with the contrastive loss-based SSL algorithms. We believe our work (DySTreSS) on temperature scaling in SSL provides a foundation for future research in contrastive learning.
SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation
Banerjee, Ayan, Biswas, Sanket, Lladรณs, Josep, Pal, Umapada
Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of \textbf{93.72}, \textbf{54.39}, \textbf{84.65} and \textbf{98.04} respectively under one billion parameters. The code is made publicly available at: \href{https://github.com/ayanban011/SwinDocSegmenter}{github.com/ayanban011/SwinDocSegmenter}
MIO : Mutual Information Optimization using Self-Supervised Binary Contrastive Learning
Manna, Siladittya, Bhattacharya, Saumik, Pal, Umapada
Self-supervised contrastive learning is one of the domains which has progressed rapidly over the last few years. Most of the state-of-the-art self-supervised algorithms use a large number of negative samples, momentum updates, specific architectural modifications, or extensive training to learn good representations. Such arrangements make the overall training process complex and challenging to realize analytically. In this paper, we propose a mutual information optimization based loss function for contrastive learning where we model contrastive learning into a binary classification problem to predict if a pair is positive or not. This formulation not only helps us to track the problem mathematically but also helps us to outperform existing algorithms. Unlike the existing methods that only maximize the mutual information in a positive pair, the proposed loss function optimizes the mutual information in both positive and negative pairs. We also present a mathematical expression for the parameter gradients flowing into the projector and the displacement of the feature vectors in the feature space. This helps us to get a mathematical insight into the working principle of contrastive learning. An additive $L_2$ regularizer is also used to prevent diverging of the feature vectors and to improve performance. The proposed method outperforms the state-of-the-art algorithms on benchmark datasets like STL-10, CIFAR-10, CIFAR-100. After only 250 epochs of pre-training, the proposed model achieves the best accuracy of 85.44\%, 60.75\%, 56.81\% on CIFAR-10, STL-10, CIFAR-100 datasets, respectively.
PLSM: A Parallelized Liquid State Machine for Unintentional Action Detection
Das, Dipayan, Bhattacharya, Saumik, Pal, Umapada, Chanda, Sukalpa
Reservoir Computing (RC) offers a viable option to deploy AI algorithms on low-end embedded system platforms. Liquid State Machine (LSM) is a bio-inspired RC model that mimics the cortical microcircuits and uses spiking neural networks (SNN) that can be directly realized on neuromorphic hardware. In this paper, we present a novel Parallelized LSM (PLSM) architecture that incorporates spatio-temporal read-out layer and semantic constraints on model output. To the best of our knowledge, such a formulation has been done for the first time in literature, and it offers a computationally lighter alternative to traditional deep-learning models. Additionally, we also present a comprehensive algorithm for the implementation of parallelizable SNNs and LSMs that are GPU-compatible. We implement the PLSM model to classify unintentional/accidental video clips, using the Oops dataset. From the experimental results on detecting unintentional action in video, it can be observed that our proposed model outperforms a self-supervised model and a fully supervised traditional deep learning model. All the implemented codes can be found at our repository https://github.com/anonymoussentience2020/Parallelized_LSM_for_Unintentional_Action_Recognition.
A New COLD Feature based Handwriting Analysis for Ethnicity/Nationality Identification
Nag, Sauradip, Shivakumara, Palaiahnakote, Yirui, Wu, Pal, Umapada, Lu, Tong
Identifying crime for forensic investigating teams when crimes involve people of different nationals is challenging. This paper proposes a new method for ethnicity (nationality) identification based on Cloud of Line Distribution (COLD) features of handwriting components. The proposed method, at first, explores tangent angle for the contour pixels in each row and the mean of intensity values of each row in an image for segmenting text lines. For segmented text lines, we use tangent angle and direction of base lines to remove rule lines in the image. We use polygonal approximation for finding dominant points for contours of edge components. Then the proposed method connects the nearest dominant points of every dominant point, which results in line segments of dominant point pairs. For each line segment, the proposed method estimates angle and length, which gives a point in polar domain. For all the line segments, the proposed method generates dense points in polar domain, which results in COLD distribution. As character component shapes change, according to nationals, the shape of the distribution changes. This observation is extracted based on distance from pixels of distribution to Principal Axis of the distribution. Then the features are subjected to an SVM classifier for identifying nationals. Experiments are conducted on a complex dataset, which show the proposed method is effective and outperforms the existing method