Pal, David
Learning to Crawl
Upadhyay, Utkarsh, Busa-Fekete, Robert, Kotlowski, Wojciech, Pal, David, Szorenyi, Balazs
Web crawling is the problem of keeping a cache of webpages fresh, i.e., having the most recent copy available when a page is requested. This problem is usually coupled with the natural restriction that the bandwidth available to the web crawler is limited. The corresponding optimization problem was solved optimally by Azar et al. [2018] under the assumption that, for each webpage, both the elapsed time between two changes and the elapsed time between two requests follow a Poisson distribution with known parameters. In this paper, we study the same control problem but under the assumption that the change rates are unknown a priori, and thus we need to estimate them in an online fashion using only partial observations (i.e., single-bit signals indicating whether the page has changed since the last refresh). As a point of departure, we characterise the conditions under which one can solve the problem with such partial observability. Next, we propose a practical estimator and compute confidence intervals for it in terms of the elapsed time between the observations. Finally, we show that the explore-and-commit algorithm achieves an $\mathcal{O}(\sqrt{T})$ regret with a carefully chosen exploration horizon. Our simulation study shows that our online policy scales well and achieves close to optimal performance for a wide range of the parameters.
Hardness of Online Sleeping Combinatorial Optimization Problems
Kale, Satyen, Lee, Chansoo, Pal, David
We show that several online combinatorial optimization problems that admit efficient no-regret algorithms become computationally hard in the sleeping setting where a subset of actions becomes unavailable in each round. Specifically, we show that the sleeping versions of these problems are at least as hard as PAC learning DNF expressions, a long standing open problem. We show hardness for the sleeping versions of Online Shortest Paths, Online Minimum Spanning Tree, Online k-Subsets, Online k-Truncated Permutations, Online Minimum Cut, and Online Bipartite Matching. The hardness result for the sleeping version of the Online Shortest Paths problem resolves an open problem presented at COLT 2015 [Koolen et al., 2015].
Coin Betting and Parameter-Free Online Learning
Orabona, Francesco, Pal, David
In the recent years, a number of parameter-free algorithms have been developed for online linear optimization over Hilbert spaces and for learning with expert advice. These algorithms achieve optimal regret bounds that depend on the unknown competitors, without having to tune the learning rates with oracle choices. We present a new intuitive framework to design parameter-free algorithms for both online linear optimization over Hilbert spaces and for learning with expert advice, based on reductions to betting on outcomes of adversarial coins. We instantiate it using a betting algorithm based on the Krichevsky-Trofimov estimator. The resulting algorithms are simple, with no parameters to be tuned, and they improve or match previous results in terms of regret guarantee and per-round complexity.
Optimal Non-Asymptotic Lower Bound on the Minimax Regret of Learning with Expert Advice
Orabona, Francesco, Pal, David
We prove non-asymptotic lower bounds on the expectation of the maximum of $d$ independent Gaussian variables and the expectation of the maximum of $d$ independent symmetric random walks. Both lower bounds recover the optimal leading constant in the limit. A simple application of the lower bound for random walks is an (asymptotically optimal) non-asymptotic lower bound on the minimax regret of online learning with expert advice.
Learning Low-Density Separators
Ben-David, Shai, Lu, Tyler, Pal, David, Sotakova, Miroslava
We define a novel, basic, unsupervised learning problem - learning the lowest density homogeneous hyperplane separator of an unknown probability distribution. This task is relevant to several problems in machine learning, such as semi-supervised learning and clustering stability. We investigate the question of existence of a universally consistent algorithm for this problem. We propose two natural learning paradigms and prove that, on input unlabeled random samples generated by any member of a rich family of distributions, they are guaranteed to converge to the optimal separator for that distribution. We complement this result by showing that no learning algorithm for our task can achieve uniform learning rates (that are independent of the data generating distribution).