Pais, Vasile
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Dhole, Kaustubh D., Gangal, Varun, Gehrmann, Sebastian, Gupta, Aadesh, Li, Zhenhao, Mahamood, Saad, Mahendiran, Abinaya, Mille, Simon, Srivastava, Ashish, Tan, Samson, Wu, Tongshuang, Sohl-Dickstein, Jascha, Choi, Jinho D., Hovy, Eduard, Dusek, Ondrej, Ruder, Sebastian, Anand, Sajant, Aneja, Nagender, Banjade, Rabin, Barthe, Lisa, Behnke, Hanna, Berlot-Attwell, Ian, Boyle, Connor, Brun, Caroline, Cabezudo, Marco Antonio Sobrevilla, Cahyawijaya, Samuel, Chapuis, Emile, Che, Wanxiang, Choudhary, Mukund, Clauss, Christian, Colombo, Pierre, Cornell, Filip, Dagan, Gautier, Das, Mayukh, Dixit, Tanay, Dopierre, Thomas, Dray, Paul-Alexis, Dubey, Suchitra, Ekeinhor, Tatiana, Di Giovanni, Marco, Gupta, Rishabh, Gupta, Rishabh, Hamla, Louanes, Han, Sang, Harel-Canada, Fabrice, Honore, Antoine, Jindal, Ishan, Joniak, Przemyslaw K., Kleyko, Denis, Kovatchev, Venelin, Krishna, Kalpesh, Kumar, Ashutosh, Langer, Stefan, Lee, Seungjae Ryan, Levinson, Corey James, Liang, Hualou, Liang, Kaizhao, Liu, Zhexiong, Lukyanenko, Andrey, Marivate, Vukosi, de Melo, Gerard, Meoni, Simon, Meyer, Maxime, Mir, Afnan, Moosavi, Nafise Sadat, Muennighoff, Niklas, Mun, Timothy Sum Hon, Murray, Kenton, Namysl, Marcin, Obedkova, Maria, Oli, Priti, Pasricha, Nivranshu, Pfister, Jan, Plant, Richard, Prabhu, Vinay, Pais, Vasile, Qin, Libo, Raji, Shahab, Rajpoot, Pawan Kumar, Raunak, Vikas, Rinberg, Roy, Roberts, Nicolas, Rodriguez, Juan Diego, Roux, Claude, S., Vasconcellos P. H., Sai, Ananya B., Schmidt, Robin M., Scialom, Thomas, Sefara, Tshephisho, Shamsi, Saqib N., Shen, Xudong, Shi, Haoyue, Shi, Yiwen, Shvets, Anna, Siegel, Nick, Sileo, Damien, Simon, Jamie, Singh, Chandan, Sitelew, Roman, Soni, Priyank, Sorensen, Taylor, Soto, William, Srivastava, Aman, Srivatsa, KV Aditya, Sun, Tony, T, Mukund Varma, Tabassum, A, Tan, Fiona Anting, Teehan, Ryan, Tiwari, Mo, Tolkiehn, Marie, Wang, Athena, Wang, Zijian, Wang, Gloria, Wang, Zijie J., Wei, Fuxuan, Wilie, Bryan, Winata, Genta Indra, Wu, Xinyi, Wydmański, Witold, Xie, Tianbao, Yaseen, Usama, Yee, M., Zhang, Jing, Zhang, Yue
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augmenter, a new participatory Python-based natural language augmentation framework which supports the creation of both transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of natural language tasks. We demonstrate the efficacy of NL-Augmenter by using several of its transformations to analyze the robustness of popular natural language models. The infrastructure, datacards and robustness analysis results are available publicly on the NL-Augmenter repository (\url{https://github.com/GEM-benchmark/NL-Augmenter}).
PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors
Avram, Andrei-Marius, Pais, Vasile, Tufis, Dan
EuroVoc is a multilingual thesaurus that was built for organizing the legislative documentary of the European Union institutions. It contains thousands of categories at different levels of specificity and its descriptors are targeted by legal texts in almost thirty languages. In this work we propose a unified framework for EuroVoc classification on 22 languages by fine-tuning modern Transformer-based pretrained language models. We study extensively the performance of our trained models and show that they significantly improve the results obtained by a similar tool - JEX - on the same dataset. The code and the fine-tuned models were open sourced, together with a programmatic interface that eases the process of loading the weights of a trained model and of classifying a new document.