Page, David
Demand-Driven Clustering in Relational Domains for Predicting Adverse Drug Events
Davis, Jesse, Costa, Vitor Santos, Peissig, Peggy, Caldwell, Michael, Berg, Elizabeth, Page, David
Learning from electronic medical records (EMR) is challenging due to their relational nature and the uncertain dependence between a patient's past and future health status. Statistical relational learning is a natural fit for analyzing EMRs but is less adept at handling their inherent latent structure, such as connections between related medications or diseases. One way to capture the latent structure is via a relational clustering of objects. We propose a novel approach that, instead of pre-clustering the objects, performs a demand-driven clustering during learning. We evaluate our algorithm on three real-world tasks where the goal is to use EMRs to predict whether a patient will have an adverse reaction to a medication. We find that our approach is more accurate than performing no clustering, pre-clustering, and using expert-constructed medical heterarchies.
Learning Bayesian Network Structure from Correlation-Immune Data
Lantz, Eric, Ray, Soumya, Page, David
Searching the complete space of possible Bayesian networks is intractable for problems of interesting size, so Bayesian network structure learning algorithms, such as the commonly used Sparse Candidate algorithm, employ heuristics. However, these heuristics also restrict the types of relationships that can be learned exclusively from data. They are unable to learn relationships that exhibit "correlation-immunity", such as parity. To learn Bayesian networks in the presence of correlation-immune relationships, we extend the Sparse Candidate algorithm with a technique called "skewing". This technique uses the observation that relationships that are correlation-immune under a specific input distribution may not be correlation-immune under another, sufficiently different distribution. We show that by extending Sparse Candidate with this technique we are able to discover relationships between random variables that are approximately correlation-immune, with a significantly lower computational cost than the alternative of considering multiple parents of a node at a time.
Using Machine Learning to Design and Interpret Gene-Expression Microarrays
Molla, Michael, Waddell, Michael, Page, David, Shavlik, Jude
However, the amount of data this new technology produces is more than one can manually analyze. Hence, the need for automated analysis of microarray data offers an opportunity for machine learning to have a significant impact on biology and medicine. This article describes microarray technology, the data it produces, and the types of machine learning tasks that naturally arise with these data. It also reviews some of the recent prominent applications of machine learning to gene-chip data, points to related tasks where machine learning might have a further impact on biology and medicine, and describes additional types of interesting data that recent advances in biotechnology allow biomedical researchers to collect.
Using Machine Learning to Design and Interpret Gene-Expression Microarrays
Molla, Michael, Waddell, Michael, Page, David, Shavlik, Jude
Gene-expression microarrays, commonly called gene chips, make it possible to simultaneously measure the rate at which a cell or tissue is expressing -- translating into a protein -- each of its thousands of genes. One can use these comprehensive snapshots of biological activity to infer regulatory pathways in cells; identify novel targets for drug design; and improve the diagnosis, prognosis, and treatment planning for those suffering from disease. However, the amount of data this new technology produces is more than one can manually analyze. Hence, the need for automated analysis of microarray data offers an opportunity for machine learning to have a significant impact on biology and medicine. This article describes microarray technology, the data it produces, and the types of machine learning tasks that naturally arise with these data. It also reviews some of the recent prominent applications of machine learning to gene-chip data, points to related tasks where machine learning might have a further impact on biology and medicine, and describes additional types of interesting data that recent advances in biotechnology allow biomedical researchers to collect.