Page, David
Training Video Foundation Models with NVIDIA NeMo
Patel, Zeeshan, He, Ethan, Mannan, Parth, Ren, Xiaowei, Wolf, Ryan, Agarwal, Niket, Huffman, Jacob, Wang, Zhuoyao, Wang, Carl, Chang, Jack, Bai, Yan, Huang, Tommy, Wang, Linnan, Jain, Sahil, Ramasamy, Shanmugam, Jennings, Joseph, Sirazitdinova, Ekaterina, Sudakov, Oleg, Ma, Mingyuan, Chen, Bobby, Lin, Forrest, Wang, Hao, Sabavat, Vasanth Rao Naik, Niverty, Sriharsha, Ou, Rong, Bhattacharya, Pallab, Page, David, Tajbakhsh, Nima, Aithal, Ashwath
Video Foundation Models (VFMs) have recently been used to simulate the real world to train physical AI systems and develop creative visual experiences. However, there are significant challenges in training large-scale, high quality VFMs that can generate high-quality videos. We present a scalable, open-source VFM training pipeline with NVIDIA NeMo, providing accelerated video dataset curation, multimodal data loading, and parallelized video diffusion model training and inference. We also provide a comprehensive performance analysis highlighting best practices for efficient VFM training and inference.
Cosmos World Foundation Model Platform for Physical AI
NVIDIA, null, :, null, Agarwal, Niket, Ali, Arslan, Bala, Maciej, Balaji, Yogesh, Barker, Erik, Cai, Tiffany, Chattopadhyay, Prithvijit, Chen, Yongxin, Cui, Yin, Ding, Yifan, Dworakowski, Daniel, Fan, Jiaojiao, Fenzi, Michele, Ferroni, Francesco, Fidler, Sanja, Fox, Dieter, Ge, Songwei, Ge, Yunhao, Gu, Jinwei, Gururani, Siddharth, He, Ethan, Huang, Jiahui, Huffman, Jacob, Jannaty, Pooya, Jin, Jingyi, Kim, Seung Wook, Klรกr, Gergely, Lam, Grace, Lan, Shiyi, Leal-Taixe, Laura, Li, Anqi, Li, Zhaoshuo, Lin, Chen-Hsuan, Lin, Tsung-Yi, Ling, Huan, Liu, Ming-Yu, Liu, Xian, Luo, Alice, Ma, Qianli, Mao, Hanzi, Mo, Kaichun, Mousavian, Arsalan, Nah, Seungjun, Niverty, Sriharsha, Page, David, Paschalidou, Despoina, Patel, Zeeshan, Pavao, Lindsey, Ramezanali, Morteza, Reda, Fitsum, Ren, Xiaowei, Sabavat, Vasanth Rao Naik, Schmerling, Ed, Shi, Stella, Stefaniak, Bartosz, Tang, Shitao, Tchapmi, Lyne, Tredak, Przemek, Tseng, Wei-Cheng, Varghese, Jibin, Wang, Hao, Wang, Haoxiang, Wang, Heng, Wang, Ting-Chun, Wei, Fangyin, Wei, Xinyue, Wu, Jay Zhangjie, Xu, Jiashu, Yang, Wei, Yen-Chen, Lin, Zeng, Xiaohui, Zeng, Yu, Zhang, Jing, Zhang, Qinsheng, Zhang, Yuxuan, Zhao, Qingqing, Zolkowski, Artur
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
Neural Markov Prolog
Thomson, Alexander, Page, David
Neural network performance has made great strides in recent years by incorporating key assumptions, often referred to as inductive biases, about data domains into specialized model structures. The designs of popular neural network architectures such as recurrent neural networks, convolutional neural networks, graph neural networks, and transformers all incorporate aspects of their respective task-specific domains into the operations, weight sharing, and connections of their underlying network structure [1, 3, 4, 9, 12]. That specialization, has, in turn, yielded improved efficiency and performance over the more general, fully connected design. Note, however, when implemented, these neural networks tend to be treated as entirely separate architectures, with no explicit connections between them, despite their similar underlying assumptions. Not only does this practice obscures some of the core theoretical similarities between these models, but it can also make modifying the architecture cumbersome when any of those original assumptions about the task domain change even slightly. There exist several well-established methods for describing and reasoning from logical knowledge bases that could trivially describe both the assumptions made on a task's domain and the graphical structure of the neural network itself. Nonetheless, simply using deterministic logic on its own to define that structure, through any given logical programming language, does not immediately align with the constrained structure of the neural network and the uncertainty present in said network's predictions.
Differentially Private Multi-Site Treatment Effect Estimation
Koga, Tatsuki, Chaudhuri, Kamalika, Page, David
Patient privacy is a major barrier to healthcare AI. For confidentiality reasons, most patient data remains in silo in separate hospitals, preventing the design of data-driven healthcare AI systems that need large volumes of patient data to make effective decisions. A solution to this is collective learning across multiple sites through federated learning with differential privacy. However, literature in this space typically focuses on differentially private statistical estimation and machine learning, which is different from the causal inference-related problems that arise in healthcare. In this work, we take a fresh look at federated learning with a focus on causal inference; specifically, we look at estimating the average treatment effect (ATE), an important task in causal inference for healthcare applications, and provide a federated analytics approach to enable ATE estimation across multiple sites along with differential privacy (DP) guarantees at each site. The main challenge comes from site heterogeneity -- different sites have different sample sizes and privacy budgets. We address this through a class of per-site estimation algorithms that reports the ATE estimate and its variance as a quality measure, and an aggregation algorithm on the server side that minimizes the overall variance of the final ATE estimate. Our experiments on real and synthetic data show that our method reliably aggregates private statistics across sites and provides better privacy-utility tradeoff under site heterogeneity than baselines.
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Li, Boyao, Thomson, Alexandar J., Engelhard, Matthew M., Page, David
In this paper, we propose an innovative solution by constructing infinite tree-structured PGMs that correspond exactly to neural networks. Our research reveals that DNNs, during forward propagation, indeed perform approximations of PGM inference that are precise in this alternative PGM structure. Not only does our research complement existing studies that describe neural networks as kernel machines or infinite-sized Gaussian processes, it also elucidates a more direct approximation that DNNs make to exact inference in PGMs. Potential benefits include improved pedagogy and interpretation of DNNs, and algorithms that can merge the strengths of PGMs and DNNs.
Temporal Poisson Square Root Graphical Models
Geng, Sinong, Kuang, Zhaobin, Peissig, Peggy, Page, David
We propose temporal Poisson square root graphical models (TPSQRs), a generalization of Poisson square root graphical models (PSQRs) specifically designed for modeling longitudinal event data. By estimating the temporal relationships for all possible pairs of event types, TPSQRs can offer a holistic perspective about whether the occurrences of any given event type could excite or inhibit any other type. A TPSQR is learned by estimating a collection of interrelated PSQRs that share the same template parameterization. These PSQRs are estimated jointly in a pseudo-likelihood fashion, where Poisson pseudo-likelihood is used to approximate the original more computationally-intensive pseudo-likelihood problem stemming from PSQRs. Theoretically, we demonstrate that under mild assumptions, the Poisson pseudo-likelihood approximation is sparsistent for recovering the underlying PSQR. Empirically, we learn TPSQRs from Marshfield Clinic electronic health records (EHRs) with millions of drug prescription and condition diagnosis events, for adverse drug reaction (ADR) detection. Experimental results demonstrate that the learned TPSQRs can recover ADR signals from the EHR effectively and efficiently.
Stochastic Learning for Sparse Discrete Markov Random Fields with Controlled Gradient Approximation Error
Geng, Sinong, Kuang, Zhaobin, Liu, Jie, Wright, Stephen, Page, David
We study the $L_1$-regularized maximum likelihood estimator/estimation (MLE) problem for discrete Markov random fields (MRFs), where efficient and scalable learning requires both sparse regularization and approximate inference. To address these challenges, we consider a stochastic learning framework called stochastic proximal gradient (SPG; Honorio 2012a, Atchade et al. 2014,Miasojedow and Rejchel 2016). SPG is an inexact proximal gradient algorithm [Schmidtet al., 2011], whose inexactness stems from the stochastic oracle (Gibbs sampling) for gradient approximation - exact gradient evaluation is infeasible in general due to the NP-hard inference problem for discrete MRFs [Koller and Friedman, 2009]. Theoretically, we provide novel verifiable bounds to inspect and control the quality of gradient approximation. Empirically, we propose the tighten asymptotically (TAY) learning strategy based on the verifiable bounds to boost the performance of SPG.
High-Throughput Machine Learning from Electronic Health Records
Kleiman, Ross S., Bennett, Paul S., Peissig, Peggy L., Berg, Richard L., Kuang, Zhaobin, Hebbring, Scott J., Caldwell, Michael D., Page, David
The widespread digitization of patient data via electronic health records (EHRs) has created an unprecedented opportunity to use machine learning algorithms to better predict disease risk at the patient level. Although predictive models have previously been constructed for a few important diseases, such as breast cancer and myocardial infarction, we currently know very little about how accurately the risk for most diseases or events can be predicted, and how far in advance. Machine learning algorithms use training data rather than preprogrammed rules to make predictions and are well suited for the complex task of disease prediction. Although there are thousands of conditions and illnesses patients can encounter, no prior research simultaneously predicts risks for thousands of diagnosis codes and thereby establishes a comprehensive patient risk profile. Here we show that such pandiagnostic prediction is possible with a high level of performance across diagnosis codes. For the tasks of predicting diagnosis risks both 1 and 6 months in advance, we achieve average areas under the receiver operating characteristic curve (AUCs) of 0.803 and 0.758, respectively, across thousands of prediction tasks. Finally, our research contributes a new clinical prediction dataset in which researchers can explore how well a diagnosis can be predicted and what health factors are most useful for prediction. For the first time, we can get a much more complete picture of how well risks for thousands of different diagnosis codes can be predicted.
Machine Learning to Predict Developmental Neurotoxicity with High-throughput Data from 2D Bio-engineered Tissues
Kuusisto, Finn, Costa, Vitor Santos, Hou, Zhonggang, Thomson, James, Page, David, Stewart, Ron
There is a growing need for fast and accurate methods for testing developmental neurotoxicity across several chemical exposure sources. Current approaches, such as in vivo animal studies, and assays of animal and human primary cell cultures, suffer from challenges related to time, cost, and applicability to human physiology. We previously demonstrated success employing machine learning to predict developmental neurotoxicity using gene expression data collected from human 3D tissue models exposed to various compounds. The 3D model is biologically similar to developing neural structures, but its complexity necessitates extensive expertise and effort to employ. By instead focusing solely on constructing an assay of developmental neurotoxicity, we propose that a simpler 2D tissue model may prove sufficient. We thus compare the accuracy of predictive models trained on data from a 2D tissue model with those trained on data from a 3D tissue model, and find the 2D model to be substantially more accurate. Furthermore, we find the 2D model to be more robust under stringent gene set selection, whereas the 3D model suffers substantial accuracy degradation. While both approaches have advantages and disadvantages, we propose that our described 2D approach could be a valuable tool for decision makers when prioritizing neurotoxicity screening.
Privacy-Preserving Collaborative Prediction using Random Forests
Giacomelli, Irene, Jha, Somesh, Kleiman, Ross, Page, David, Yoon, Kyonghwan
We study the problem of privacy-preserving machine learning (PPML) for ensemble methods, focusing our effort on random forests. In collaborative analysis, PPML attempts to solve the conflict between the need for data sharing and privacy. This is especially important in privacy sensitive applications such as learning predictive models for clinical decision support from EHR data from different clinics, where each clinic has a responsibility for its patients' privacy. We propose a new approach for ensemble methods: each entity learns a model, from its own data, and then when a client asks the prediction for a new private instance, the answers from all the locally trained models are used to compute the prediction in such a way that no extra information is revealed. We implement this approach for random forests and we demonstrate its high efficiency and potential accuracy benefit via experiments on real-world datasets, including actual EHR data.