Goto

Collaborating Authors

 Paeedeh, Naeem


Few-Shot Class Incremental Learning via Robust Transformer Approach

arXiv.org Artificial Intelligence

Few-Shot Class-Incremental Learning presents an extension of the Class Incremental Learning problem where a model is faced with the problem of data scarcity while addressing the catastrophic forgetting problem. This problem remains an open problem because all recent works are built upon the convolutional neural networks performing sub-optimally compared to the transformer approaches. Our paper presents Robust Transformer Approach built upon the Compact Convolution Transformer. The issue of overfitting due to few samples is overcome with the notion of the stochastic classifier, where the classifier's weights are sampled from a distribution with mean and variance vectors, thus increasing the likelihood of correct classifications, and the batch-norm layer to stabilize the training process. The issue of CF is dealt with the idea of delta parameters, small task-specific trainable parameters while keeping the backbone networks frozen. A non-parametric approach is developed to infer the delta parameters for the model's predictions. The prototype rectification approach is applied to avoid biased prototype calculations due to the issue of data scarcity. The advantage of ROBUSTA is demonstrated through a series of experiments in the benchmark problems where it is capable of outperforming prior arts with big margins without any data augmentation protocols.


Cross-Domain Few-Shot Learning via Adaptive Transformer Networks

arXiv.org Artificial Intelligence

Most few-shot learning works rely on the same domain assumption between the base and the target tasks, hindering their practical applications. This paper proposes an adaptive transformer network (ADAPTER), a simple but effective solution for cross-domain few-shot learning where there exist large domain shifts between the base task and the target task. ADAPTER is built upon the idea of bidirectional cross-attention to learn transferable features between the two domains. The proposed architecture is trained with DINO to produce diverse, and less biased features to avoid the supervision collapse problem. Furthermore, the label smoothing approach is proposed to improve the consistency and reliability of the predictions by also considering the predicted labels of the close samples in the embedding space. The performance of ADAPTER is rigorously evaluated in the BSCD-FSL benchmarks in which it outperforms prior arts with significant margins.