Pachauri, Deepti
Permutation Diffusion Maps (PDM) with Application to the Image Association Problem in Computer Vision
Pachauri, Deepti, Kondor, Risi, Sargur, Gautam, Singh, Vikas
Consistently matching keypoints across images, and the related problem of finding clusters of nearby images, are critical components of various tasks in Computer Vision, including Structure from Motion (SfM). Unfortunately, occlusion and large repetitive structures tend to mislead most currently used matching algorithms, leading to characteristic pathologies in the final output. In this paper we introduce a new method, Permutations Diffusion Maps (PDM), to solve the matching problem, as well as a related new affinity measure, derived using ideas from harmonic analysis on the symmetric group. We show that just by using it as a preprocessing step to existing SfM pipelines, PDM can greatly improve reconstruction quality on difficult datasets.
Solving the multi-way matching problem by permutation synchronization
Pachauri, Deepti, Kondor, Risi, Singh, Vikas
The problem of matching not just two, but m different sets of objects to each other arises in a variety of contexts, including finding the correspondence between feature points across multiple images in computer vision. At present it is usually solved by matching the sets pairwise, in series. In contrast, we propose a new method, permutation synchronization, which finds all the matchings jointly, in one shot, via a relaxation to eigenvector decomposition. The resulting algorithm is both computationally efficient, and, as we demonstrate with theoretical arguments as well as experimental results, much more stable to noise than previous methods.
Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination
Kim, Won H., Pachauri, Deepti, Hatt, Charles, Chung, Moo. K., Johnson, Sterling, Singh, Vikas
Hypothesis testing on signals defined on surfaces (such as the cortical surface) is a fundamental component of a variety of studies in Neuroscience. The goal here is to identify regions that exhibit changes as a function of the clinical condition under study. As the clinical questions of interest move towards identifying very early signs of diseases, the corresponding statistical differences at the group level invariably become weaker and increasingly hard to identify. Indeed, after a multiple comparisons correction is adopted (to account for correlated statistical tests over all surface points), very few regions may survive. In contrast to hypothesis tests on point-wise measurements, in this paper, we make the case for performing statistical analysis on multi-scale shape descriptors that characterize the local topological context of the signal around each surface vertex. Our descriptors are based on recent results from harmonic analysis, that show how wavelet theory extends to non-Euclidean settings (i.e., irregular weighted graphs). We provide strong evidence that these descriptors successfully pick up group-wise differences, where traditional methods either fail or yield unsatisfactory results. Other than this primary application, we show how the framework allows performing cortical surface smoothing in the native space without mappint to a unit sphere.
Incorporating Domain Knowledge in Matching Problems via Harmonic Analysis
Pachauri, Deepti, Collins, Maxwell, SIngh, Vikas, Kondor, Risi
Matching one set of objects to another is a ubiquitous task in machine learning and computer vision that often reduces to some form of the quadratic assignment problem (QAP). The QAP is known to be notoriously hard, both in theory and in practice. Here, we investigate if this difficulty can be mitigated when some additional piece of information is available: (a) that all QAP instances of interest come from the same application, and (b) the correct solution for a set of such QAP instances is given. We propose a new approach to accelerate the solution of QAPs based on learning parameters for a modified objective function from prior QAP instances. A key feature of our approach is that it takes advantage of the algebraic structure of permutations, in conjunction with special methods for optimizing functions over the symmetric group Sn in Fourier space. Experiments show that in practical domains the new method can outperform existing approaches.