PK, Anjana
Design of Resistive Frequency Selective Surface based Radar Absorbing Structure-A Deep Learning Approach
Sutrakar, Vijay Kumar, Morge, Nikhil, PK, Anjana, PV, Abhilash
In this paper, deep learning-based approach for the design of radar absorbing structure using resistive frequency selective surface is proposed. In the present design, reflection coefficient is used as input of deep learning model and the Jerusalem cross based unit cell dimensions is predicted as outcome. Sequential neural network based deep learning model with adaptive moment estimation optimizer is used for designing multi frequency band absorbers. The model is used for designing radar absorber from L to Ka band depending on unit cell parameters and thickness. The outcome of deep learning model is further compared with full-wave simulation software and an excellent match is obtained. The proposed model can be used for the low-cost design of various radar absorbing structures using a single unit cell and thickness across the band of frequencies.
Design of Cavity Backed Slotted Antenna using Machine Learning Regression Model
Sutrakar, Vijay Kumar, PK, Anjana, Bisariya, Rohit, KK, Soumya, M, Gopal Chawan
In this paper, a regression-based machine learning model is used for the design of cavity backed slotted antenna. This type of antenna is commonly used in military and aviation communication systems. Initial reflection coefficient data of cavity backed slotted antenna is generated using electromagnetic solver. These reflection coefficient data is then used as input for training regression-based machine learning model. The model is trained to predict the dimensions of cavity backed slotted antenna based on the input reflection coefficient for a wide frequency band varying from 1 GHz to 8 GHz. This approach allows for rapid prediction of optimal antenna configurations, reducing the need for repeated physical testing and manual adjustments, may lead to significant amount of design and development cost saving. The proposed model also demonstrates its versatility in predicting multi frequency resonance across 1 GHz to 8 GHz. Also, the proposed approach demonstrates the potential for leveraging machine learning in advanced antenna design, enhancing efficiency and accuracy in practical applications such as radar, military identification systems and secure communication networks.