Goto

Collaborating Authors

 Pătraşcu, Andrei


Detecting and Mitigating DDoS Attacks with AI: A Survey

arXiv.org Artificial Intelligence

Distributed Denial of Service attacks represent an active cybersecurity research problem. Recent research shifted from static rule-based defenses towards AI-based detection and mitigation. This comprehensive survey covers several key topics. Preeminently, state-of-the-art AI detection methods are discussed. An in-depth taxonomy based on manual expert hierarchies and an AI-generated dendrogram are provided, thus settling DDoS categorization ambiguities. An important discussion on available datasets follows, covering data format options and their role in training AI detection methods together with adversarial training and examples augmentation. Beyond detection, AI based mitigation techniques are surveyed as well. Finally, multiple open research directions are proposed.


Fusing Dictionary Learning and Support Vector Machines for Unsupervised Anomaly Detection

arXiv.org Artificial Intelligence

We study in this paper the improvement of one-class support vector machines (OC-SVM) through sparse representation techniques for unsupervised anomaly detection. As Dictionary Learning (DL) became recently a common analysis technique that reveals hidden sparse patterns of data, our approach uses this insight to endow unsupervised detection with more control on pattern finding and dimensions. We introduce a new anomaly detection model that unifies the OC-SVM and DL residual functions into a single composite objective, subsequently solved through K-SVD-type iterative algorithms. A closed-form of the alternating K-SVD iteration is explicitly derived for the new composite model and practical implementable schemes are discussed. The standard DL model is adapted for the Dictionary Pair Learning (DPL) context, where the usual sparsity constraints are naturally eliminated. Finally, we extend both objectives to the more general setting that allows the use of kernel functions. The empirical convergence properties of the resulting algorithms are provided and an in-depth analysis of their parametrization is performed while also demonstrating their numerical performance in comparison with existing methods.


Learning Explicitly Conditioned Sparsifying Transforms

arXiv.org Artificial Intelligence

Sparsifying transforms became in the last decades widely known tools for finding structured sparse representations of signals in certain transform domains. Despite the popularity of classical transforms such as DCT and Wavelet, learning optimal transforms that guarantee good representations of data into the sparse domain has been recently analyzed in a series of papers. Typically, the conditioning number and representation ability are complementary key features of learning square transforms that may not be explicitly controlled in a given optimization model. Unlike the existing approaches from the literature, in our paper, we consider a new sparsifying transform model that enforces explicit control over the data representation quality and the condition number of the learned transforms. We confirm through numerical experiments that our model presents better numerical behavior than the state-of-the-art.