Pötscher, Benedikt M.
Confidence Sets Based on Penalized Maximum Likelihood Estimators in Gaussian Regression
Pötscher, Benedikt M., Schneider, Ulrike
Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the length of the shortest interval based on the adaptive LASSO, which is larger than the length of the shortest interval based on the LASSO, which in turn is larger than the standard interval based on the maximum likelihood estimator. In the case where the penalized estimators are tuned to possess the `sparsity property', the intervals based on these estimators are larger than the standard interval by an order of magnitude. Furthermore, a simple asymptotic confidence interval construction in the `sparse' case, that also applies to the smoothly clipped absolute deviation estimator, is discussed. The results for the known-variance case are shown to carry over to the unknown-variance case in an appropriate asymptotic sense.
On the Distribution of the Adaptive LASSO Estimator
Pötscher, Benedikt M., Schneider, Ulrike
We study the distribution of the adaptive LASSO estimator (Zou (2006)) in finite samples as well as in the large-sample limit. The large-sample distributions are derived both for the case where the adaptive LASSO estimator is tuned to perform conservative model selection as well as for the case where the tuning results in consistent model selection. We show that the finite-sample as well as the large-sample distributions are typically highly non-normal, regardless of the choice of the tuning parameter. The uniform convergence rate is also obtained, and is shown to be slower than $n^{-1/2}$ in case the estimator is tuned to perform consistent model selection. In particular, these results question the statistical relevance of the `oracle' property of the adaptive LASSO estimator established in Zou (2006). Moreover, we also provide an impossibility result regarding the estimation of the distribution function of the adaptive LASSO estimator.The theoretical results, which are obtained for a regression model with orthogonal design, are complemented by a Monte Carlo study using non-orthogonal regressors.