Goto

Collaborating Authors

 Oztoprak, Figen


Bolstering Stochastic Gradient Descent with Model Building

arXiv.org Artificial Intelligence

Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the step length. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the step length but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods.


Newton-Like Methods for Sparse Inverse Covariance Estimation

Neural Information Processing Systems

We propose two classes of second-order optimization methods for solving the sparse inverse covariance estimation problem. The first approach, which we call the Newton-LASSO method, minimizes a piecewise quadratic model of the objective function at every iteration to generate a step. We employ the fast iterative shrinkage thresholding method (FISTA) to solve this subproblem. The second approach, which we call the Orthant-Based Newton method, is a two-phase algorithm that first identifies an orthant face and then minimizes a smooth quadratic approximation of the objective function using the conjugate gradient method. These methods exploit the structure of the Hessian to efficiently compute the search direction and to avoid explicitly storing the Hessian. We show that quasi-Newton methods are also effective in this context, and describe a limited memory BFGS variant of the orthant-based Newton method. We present numerical results that suggest that all the techniques described in this paper have attractive properties and constitute useful tools for solving the sparse inverse covariance estimation problem. Comparisons with the method implemented in the QUIC software package are presented.