Ozkan, Ece
Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis
Marcinkevičs, Ričards, Wolfertstetter, Patricia Reis, Klimiene, Ugne, Chin-Cheong, Kieran, Paschke, Alyssia, Zerres, Julia, Denzinger, Markus, Niederberger, David, Wellmann, Sven, Ozkan, Ece, Knorr, Christian, Vogt, Julia E.
Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.
Multi-domain improves out-of-distribution and data-limited scenarios for medical image analysis
Ozkan, Ece, Boix, Xavier
Current machine learning methods for medical image analysis primarily focus on developing models tailored for their specific tasks, utilizing data within their target domain. These specialized models tend to be data-hungry and often exhibit limitations in generalizing to out-of-distribution samples. Recently, foundation models have been proposed, which combine data from various domains and demonstrate excellent generalization capabilities. Building upon this, this work introduces the incorporation of diverse medical image domains, including different imaging modalities like X-ray, MRI, CT, and ultrasound images, as well as various viewpoints such as axial, coronal, and sagittal views. We refer to this approach as multi-domain model and compare its performance to that of specialized models. Our findings underscore the superior generalization capabilities of multi-domain models, particularly in scenarios characterized by limited data availability and out-of-distribution, frequently encountered in healthcare applications. The integration of diverse data allows multi-domain models to utilize shared information across domains, enhancing the overall outcomes significantly. To illustrate, for organ recognition, multi-domain model can enhance accuracy by up to 10% compared to conventional specialized models.
M(otion)-mode Based Prediction of Ejection Fraction using Echocardiograms
Ozkan, Ece, Sutter, Thomas M., Hu, Yurong, Balzer, Sebastian, Vogt, Julia E.
Early detection of cardiac dysfunction through routine screening is vital for diagnosing cardiovascular diseases. An important metric of cardiac function is the left ventricular ejection fraction (EF), where lower EF is associated with cardiomyopathy. Echocardiography is a popular diagnostic tool in cardiology, with ultrasound being a low-cost, real-time, and non-ionizing technology. However, human assessment of echocardiograms for calculating EF is time-consuming and expertise-demanding, raising the need for an automated approach. In this work, we propose using the M(otion)-mode of echocardiograms for estimating the EF and classifying cardiomyopathy. We generate multiple artificial M-mode images from a single echocardiogram and combine them using off-the-shelf model architectures. Additionally, we extend contrastive learning (CL) to cardiac imaging to learn meaningful representations from exploiting structures in unlabeled data allowing the model to achieve high accuracy, even with limited annotations. Our experiments show that the supervised setting converges with only ten modes and is comparable to the baseline method while bypassing its cumbersome training process and being computationally much more efficient. Furthermore, CL using M-mode images is helpful for limited data scenarios, such as having labels for only 200 patients, which is common in medical applications.
Introduction to Machine Learning for Physicians: A Survival Guide for Data Deluge
Marcinkevičs, Ričards, Ozkan, Ece, Vogt, Julia E.
Many modern research fields increasingly rely on collecting and analysing massive, often unstructured, and unwieldy datasets. Consequently, there is growing interest in machine learning and artificial intelligence applications that can harness this `data deluge'. This broad nontechnical overview provides a gentle introduction to machine learning with a specific focus on medical and biological applications. We explain the common types of machine learning algorithms and typical tasks that can be solved, illustrating the basics with concrete examples from healthcare. Lastly, we provide an outlook on open challenges, limitations, and potential impacts of machine-learning-powered medicine.