Ozaki, Yoshihiko
PLaMo-100B: A Ground-Up Language Model Designed for Japanese Proficiency
Elements, Preferred, :, null, Abe, Kenshin, Chubachi, Kaizaburo, Fujita, Yasuhiro, Hirokawa, Yuta, Imajo, Kentaro, Kataoka, Toshiki, Komatsu, Hiroyoshi, Mikami, Hiroaki, Mogami, Tsuguo, Murai, Shogo, Nakago, Kosuke, Nishino, Daisuke, Ogawa, Toru, Okanohara, Daisuke, Ozaki, Yoshihiko, Sano, Shotaro, Suzuki, Shuji, Xu, Tianqi, Yanase, Toshihiko
We introduce PLaMo-100B, a large-scale language model designed for Japanese proficiency. The model was trained from scratch using 2 trillion tokens, with architecture such as QK Normalization and Z-Loss to ensure training stability during the training process. Post-training techniques, including Supervised Fine-Tuning and Direct Preference Optimization, were applied to refine the model's performance. Benchmark evaluations suggest that PLaMo-100B performs well, particularly in Japanese-specific tasks, achieving results that are competitive with frontier models like GPT-4. The base model is available at https://huggingface.co/pfnet/plamo-100b.
Multiobjective Tree-Structured Parzen Estimator
Ozaki, Yoshihiko | Tanigaki, Yuki (National Institute of Advanced Industrial Science and Technology) | Watanabe, Shuhei (University of Freiburg) | Nomura, Masahiro (CyberAgent, Inc.) | Onishi, Masaki (National Institute of Advanced Industrial Science and Technology)
Practitioners often encounter challenging real-world problems that involve a simultaneous optimization of multiple objectives in a complex search space. To address these problems, we propose a practical multiobjective Bayesian optimization algorithm. It is an extension of the widely used Tree-structured Parzen Estimator (TPE) algorithm, called Multiobjective Tree-structured Parzen Estimator (MOTPE). We demonstrate that MOTPE approximates the Pareto fronts of a variety of benchmark problems and a convolutional neural network design problem better than existing methods through the numerical results. We also investigate how the configuration of MOTPE affects the behavior and the performance of the method and the effectiveness of asynchronous parallelization of the method based on the empirical results.