Owodunni, Abraham Toluwase
AccentFold: A Journey through African Accents for Zero-Shot ASR Adaptation to Target Accents
Owodunni, Abraham Toluwase, Yadavalli, Aditya, Emezue, Chris Chinenye, Olatunji, Tobi, Mbataku, Clinton C
Despite advancements in speech recognition, accented speech remains challenging. While previous approaches have focused on modeling techniques or creating accented speech datasets, gathering sufficient data for the multitude of accents, particularly in the African context, remains impractical due to their sheer diversity and associated budget constraints. To address these challenges, we propose AccentFold, a method that exploits spatial relationships between learned accent embeddings to improve downstream Automatic Speech Recognition (ASR). Our exploratory analysis of speech embeddings representing 100+ African accents reveals interesting spatial accent relationships highlighting geographic and genealogical similarities, capturing consistent phonological, and morphological regularities, all learned empirically from speech. Furthermore, we discover accent relationships previously uncharacterized by the Ethnologue. Through empirical evaluation, we demonstrate the effectiveness of AccentFold by showing that, for out-of-distribution (OOD) accents, sampling accent subsets for training based on AccentFold information outperforms strong baselines a relative WER improvement of 4.6%. AccentFold presents a promising approach for improving ASR performance on accented speech, particularly in the context of African accents, where data scarcity and budget constraints pose significant challenges. Our findings emphasize the potential of leveraging linguistic relationships to improve zero-shot ASR adaptation to target accents.
AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
Ogundepo, Odunayo, Gwadabe, Tajuddeen R., Rivera, Clara E., Clark, Jonathan H., Ruder, Sebastian, Adelani, David Ifeoluwa, Dossou, Bonaventure F. P., DIOP, Abdou Aziz, Sikasote, Claytone, Hacheme, Gilles, Buzaaba, Happy, Ezeani, Ignatius, Mabuya, Rooweither, Osei, Salomey, Emezue, Chris, Kahira, Albert Njoroge, Muhammad, Shamsuddeen H., Oladipo, Akintunde, Owodunni, Abraham Toluwase, Tonja, Atnafu Lambebo, Shode, Iyanuoluwa, Asai, Akari, Ajayi, Tunde Oluwaseyi, Siro, Clemencia, Arthur, Steven, Adeyemi, Mofetoluwa, Ahia, Orevaoghene, Aremu, Anuoluwapo, Awosan, Oyinkansola, Chukwuneke, Chiamaka, Opoku, Bernard, Ayodele, Awokoya, Otiende, Verrah, Mwase, Christine, Sinkala, Boyd, Rubungo, Andre Niyongabo, Ajisafe, Daniel A., Onwuegbuzia, Emeka Felix, Mbow, Habib, Niyomutabazi, Emile, Mukonde, Eunice, Lawan, Falalu Ibrahim, Ahmad, Ibrahim Said, Alabi, Jesujoba O., Namukombo, Martin, Chinedu, Mbonu, Phiri, Mofya, Putini, Neo, Mngoma, Ndumiso, Amuok, Priscilla A., Iro, Ruqayya Nasir, Adhiambo, Sonia
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.