Ouyang, Linke
OmniDocBench: Benchmarking Diverse PDF Document Parsing with Comprehensive Annotations
Ouyang, Linke, Qu, Yuan, Zhou, Hongbin, Zhu, Jiawei, Zhang, Rui, Lin, Qunshu, Wang, Bin, Zhao, Zhiyuan, Jiang, Man, Zhao, Xiaomeng, Shi, Jin, Wu, Fan, Chu, Pei, Liu, Minghao, Li, Zhenxiang, Xu, Chao, Zhang, Bo, Shi, Botian, Tu, Zhongying, He, Conghui
Document content extraction is crucial in computer vision, especially for meeting the high-quality data needs of large language models (LLMs) and retrieval-augmented generation (RAG) technologies. However, current document parsing methods suffer from significant limitations in terms of diversity and comprehensive evaluation. To address these challenges, we introduce OmniDocBench, a novel multi-source benchmark designed to advance automated document content extraction. OmniDocBench includes a meticulously curated and annotated high-quality evaluation dataset comprising nine diverse document types, such as academic papers, textbooks, slides, among others. Our benchmark provides a flexible and comprehensive evaluation framework with 19 layout category labels and 14 attribute labels, enabling multi-level assessments across entire datasets, individual modules, or specific data types. Using OmniDocBench, we perform an exhaustive comparative analysis of existing modular pipelines and multimodal end-to-end methods, highlighting their limitations in handling document diversity and ensuring fair evaluation. OmniDocBench establishes a robust, diverse, and fair evaluation standard for the document content extraction field, offering crucial insights for future advancements and fostering the development of document parsing technologies. The codes and dataset is available in https://github.com/opendatalab/OmniDocBench.
InternLM-XComposer-2.5: A Versatile Large Vision Language Model Supporting Long-Contextual Input and Output
Zhang, Pan, Dong, Xiaoyi, Zang, Yuhang, Cao, Yuhang, Qian, Rui, Chen, Lin, Guo, Qipeng, Duan, Haodong, Wang, Bin, Ouyang, Linke, Zhang, Songyang, Zhang, Wenwei, Li, Yining, Gao, Yang, Sun, Peng, Zhang, Xinyue, Li, Wei, Li, Jingwen, Wang, Wenhai, Yan, Hang, He, Conghui, Zhang, Xingcheng, Chen, Kai, Dai, Jifeng, Qiao, Yu, Lin, Dahua, Wang, Jiaqi
We present InternLM-XComposer-2.5 (IXC-2.5), a versatile large-vision language model that supports long-contextual input and output. IXC-2.5 excels in various text-image comprehension and composition applications, achieving GPT-4V level capabilities with merely 7B LLM backend. Trained with 24K interleaved image-text contexts, it can seamlessly extend to 96K long contexts via RoPE extrapolation. This long-context capability allows IXC-2.5 to excel in tasks requiring extensive input and output contexts. Compared to its previous 2.0 version, InternLM-XComposer-2.5 features three major upgrades in vision-language comprehension: (1) Ultra-High Resolution Understanding, (2) Fine-Grained Video Understanding, and (3) Multi-Turn Multi-Image Dialogue. In addition to comprehension, IXC-2.5 extends to two compelling applications using extra LoRA parameters for text-image composition: (1) Crafting Webpages and (2) Composing High-Quality Text-Image Articles. IXC-2.5 has been evaluated on 28 benchmarks, outperforming existing open-source state-of-the-art models on 16 benchmarks. It also surpasses or competes closely with GPT-4V and Gemini Pro on 16 key tasks. The InternLM-XComposer-2.5 is publicly available at https://github.com/InternLM/InternLM-XComposer.
DSDL: Data Set Description Language for Bridging Modalities and Tasks in AI Data
Wang, Bin, Ouyang, Linke, Wu, Fan, Ning, Wenchang, Han, Xiao, Zhao, Zhiyuan, Peng, Jiahui, Jiang, Yiying, Lin, Dahua, He, Conghui
In the era of artificial intelligence, the diversity of data modalities and annotation formats often renders data unusable directly, requiring understanding and format conversion before it can be used by researchers or developers with different needs. To tackle this problem, this article introduces a framework called Dataset Description Language (DSDL) that aims to simplify dataset processing by providing a unified standard for AI datasets. DSDL adheres to the three basic practical principles of generic, portable, and extensible, using a unified standard to express data of different modalities and structures, facilitating the dissemination of AI data, and easily extending to new modalities and tasks. The standardized specifications of DSDL reduce the workload for users in data dissemination, processing, and usage. To further improve user convenience, we provide predefined DSDL templates for various tasks, convert mainstream datasets to comply with DSDL specifications, and provide comprehensive documentation and DSDL tools. These efforts aim to simplify the use of AI data, thereby improving the efficiency of AI development.
InternLM-XComposer2-4KHD: A Pioneering Large Vision-Language Model Handling Resolutions from 336 Pixels to 4K HD
Dong, Xiaoyi, Zhang, Pan, Zang, Yuhang, Cao, Yuhang, Wang, Bin, Ouyang, Linke, Zhang, Songyang, Duan, Haodong, Zhang, Wenwei, Li, Yining, Yan, Hang, Gao, Yang, Chen, Zhe, Zhang, Xinyue, Li, Wei, Li, Jingwen, Wang, Wenhai, Chen, Kai, He, Conghui, Zhang, Xingcheng, Dai, Jifeng, Qiao, Yu, Lin, Dahua, Wang, Jiaqi
The Large Vision-Language Model (LVLM) field has seen significant advancements, yet its progression has been hindered by challenges in comprehending fine-grained visual content due to limited resolution. Recent efforts have aimed to enhance the high-resolution understanding capabilities of LVLMs, yet they remain capped at approximately 1500 x 1500 pixels and constrained to a relatively narrow resolution range. This paper represents InternLM-XComposer2-4KHD, a groundbreaking exploration into elevating LVLM resolution capabilities up to 4K HD (3840 x 1600) and beyond. Concurrently, considering the ultra-high resolution may not be necessary in all scenarios, it supports a wide range of diverse resolutions from 336 pixels to 4K standard, significantly broadening its scope of applicability. Specifically, this research advances the patch division paradigm by introducing a novel extension: dynamic resolution with automatic patch configuration. It maintains the training image aspect ratios while automatically varying patch counts and configuring layouts based on a pre-trained Vision Transformer (ViT) (336 x 336), leading to dynamic training resolution from 336 pixels to 4K standard. Our research demonstrates that scaling training resolution up to 4K HD leads to consistent performance enhancements without hitting the ceiling of potential improvements. InternLM-XComposer2-4KHD shows superb capability that matches or even surpasses GPT-4V and Gemini Pro in 10 of the 16 benchmarks. The InternLM-XComposer2-4KHD model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.
InternLM2 Technical Report
Cai, Zheng, Cao, Maosong, Chen, Haojiong, Chen, Kai, Chen, Keyu, Chen, Xin, Chen, Xun, Chen, Zehui, Chen, Zhi, Chu, Pei, Dong, Xiaoyi, Duan, Haodong, Fan, Qi, Fei, Zhaoye, Gao, Yang, Ge, Jiaye, Gu, Chenya, Gu, Yuzhe, Gui, Tao, Guo, Aijia, Guo, Qipeng, He, Conghui, Hu, Yingfan, Huang, Ting, Jiang, Tao, Jiao, Penglong, Jin, Zhenjiang, Lei, Zhikai, Li, Jiaxing, Li, Jingwen, Li, Linyang, Li, Shuaibin, Li, Wei, Li, Yining, Liu, Hongwei, Liu, Jiangning, Hong, Jiawei, Liu, Kaiwen, Liu, Kuikun, Liu, Xiaoran, Lv, Chengqi, Lv, Haijun, Lv, Kai, Ma, Li, Ma, Runyuan, Ma, Zerun, Ning, Wenchang, Ouyang, Linke, Qiu, Jiantao, Qu, Yuan, Shang, Fukai, Shao, Yunfan, Song, Demin, Song, Zifan, Sui, Zhihao, Sun, Peng, Sun, Yu, Tang, Huanze, Wang, Bin, Wang, Guoteng, Wang, Jiaqi, Wang, Jiayu, Wang, Rui, Wang, Yudong, Wang, Ziyi, Wei, Xingjian, Weng, Qizhen, Wu, Fan, Xiong, Yingtong, Xu, Chao, Xu, Ruiliang, Yan, Hang, Yan, Yirong, Yang, Xiaogui, Ye, Haochen, Ying, Huaiyuan, Yu, Jia, Yu, Jing, Zang, Yuhang, Zhang, Chuyu, Zhang, Li, Zhang, Pan, Zhang, Peng, Zhang, Ruijie, Zhang, Shuo, Zhang, Songyang, Zhang, Wenjian, Zhang, Wenwei, Zhang, Xingcheng, Zhang, Xinyue, Zhao, Hui, Zhao, Qian, Zhao, Xiaomeng, Zhou, Fengzhe, Zhou, Zaida, Zhuo, Jingming, Zou, Yicheng, Qiu, Xipeng, Qiao, Yu, Lin, Dahua
The evolution of Large Language Models (LLMs) like ChatGPT and GPT-4 has sparked discussions on the advent of Artificial General Intelligence (AGI). However, replicating such advancements in open-source models has been challenging. This paper introduces InternLM2, an open-source LLM that outperforms its predecessors in comprehensive evaluations across 6 dimensions and 30 benchmarks, long-context modeling, and open-ended subjective evaluations through innovative pre-training and optimization techniques. The pre-training process of InternLM2 is meticulously detailed, highlighting the preparation of diverse data types including text, code, and long-context data. InternLM2 efficiently captures long-term dependencies, initially trained on 4k tokens before advancing to 32k tokens in pre-training and fine-tuning stages, exhibiting remarkable performance on the 200k ``Needle-in-a-Haystack" test. InternLM2 is further aligned using Supervised Fine-Tuning (SFT) and a novel Conditional Online Reinforcement Learning from Human Feedback (COOL RLHF) strategy that addresses conflicting human preferences and reward hacking. By releasing InternLM2 models in different training stages and model sizes, we provide the community with insights into the model's evolution.
Beyond Hallucinations: Enhancing LVLMs through Hallucination-Aware Direct Preference Optimization
Zhao, Zhiyuan, Wang, Bin, Ouyang, Linke, Dong, Xiaoyi, Wang, Jiaqi, He, Conghui
Multimodal large language models have made significant advancements in recent years, yet they still suffer from a common issue known as the "hallucination problem", in which the models generate textual descriptions that inaccurately depict or entirely fabricate content from associated images. This paper introduces a novel solution, Hallucination-Aware Direct Preference Optimization (HA-DPO), which reframes the hallucination problem as a preference selection task. The model is trained to favor the non-hallucinating response when presented with two responses of the same image (one accurate and one hallucinatory). Furthermore, this paper proposes an efficient pipeline for constructing positive~(non-hallucinatory) and negative~(hallucinatory) sample pairs, ensuring a high-quality, style-consistent dataset for robust preference learning. When applied to three mainstream multimodal models, HA-DPO significantly reduced hallucination issues and amplified the models' generalization capabilities. Notably, the MiniGPT-4 model, when enhanced with HA-DPO, demonstrated a substantial improvement: POPE accuracy rose from 51.13% to 86.13% (an absolute improvement of 35%), and the MME score surged from 932.00 to 1326.46 (a relative improvement of 42.32%). The codes, models, and datasets are made accessible at https://opendatalab.github.io/HA-DPO.
InternLM-XComposer2: Mastering Free-form Text-Image Composition and Comprehension in Vision-Language Large Model
Dong, Xiaoyi, Zhang, Pan, Zang, Yuhang, Cao, Yuhang, Wang, Bin, Ouyang, Linke, Wei, Xilin, Zhang, Songyang, Duan, Haodong, Cao, Maosong, Zhang, Wenwei, Li, Yining, Yan, Hang, Gao, Yang, Zhang, Xinyue, Li, Wei, Li, Jingwen, Chen, Kai, He, Conghui, Zhang, Xingcheng, Qiao, Yu, Lin, Dahua, Wang, Jiaqi
We introduce InternLM-XComposer2, a cutting-edge vision-language model excelling in free-form text-image composition and comprehension. This model goes beyond conventional vision-language understanding, adeptly crafting interleaved text-image content from diverse inputs like outlines, detailed textual specifications, and reference images, enabling highly customizable content creation. InternLM-XComposer2 proposes a Partial LoRA (PLoRA) approach that applies additional LoRA parameters exclusively to image tokens to preserve the integrity of pre-trained language knowledge, striking a balance between precise vision understanding and text composition with literary talent. Experimental results demonstrate the superiority of InternLM-XComposer2 based on InternLM2-7B in producing high-quality long-text multi-modal content and its exceptional vision-language understanding performance across various benchmarks, where it not only significantly outperforms existing multimodal models but also matches or even surpasses GPT-4V and Gemini Pro in certain assessments. This highlights its remarkable proficiency in the realm of multimodal understanding. The InternLM-XComposer2 model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.
MLLM-DataEngine: An Iterative Refinement Approach for MLLM
Zhao, Zhiyuan, Ouyang, Linke, Wang, Bin, Huang, Siyuan, Zhang, Pan, Dong, Xiaoyi, Wang, Jiaqi, He, Conghui
Despite the great advance of Multimodal Large Language Models (MLLMs) in both instruction dataset building and benchmarking, the independence of training and evaluation makes current MLLMs hard to further improve their capability under the guidance of evaluation results with a relatively low human cost. In this paper, we propose MLLM-DataEngine, a novel closed-loop system that bridges data generation, model training, and evaluation. Within each loop iteration, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results, then generate a proper incremental dataset for the next training iteration and enhance the model capability iteratively. Compared with previous data collection methods which are separate from the benchmarking, the data generated by MLLM-DataEngine shows better targeting, quality, and correctness. For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data within each incremental dataset based on the benchmarking results. For quality, we resort to GPT-4 to generate high-quality data with each given data type. For correctness, prompt design is critical for the data generation results. Rather than previous hand-crafted prompt, we propose an Interactive Prompt Optimization strategy, which optimizes the prompt with the multi-round interaction between human and GPT, and improve the correctness of generated data greatly. Through extensive experiments, we find our MLLM-DataEngine could boost the MLLM capability in a targeted and automatic manner, with only a few human participation. We hope it could be a general solution for the following MLLMs building. The MLLM-DataEngine has been open-sourced and is now available at https://github.com/opendatalab/MLLM-DataEngine.