Ostrovski, Georg
Deep Reinforcement Learning with Plasticity Injection
Nikishin, Evgenii, Oh, Junhyuk, Ostrovski, Georg, Lyle, Clare, Pascanu, Razvan, Dabney, Will, Barreto, André
A growing body of evidence suggests that neural networks employed in deep reinforcement learning (RL) gradually lose their plasticity, the ability to learn from new data; however, the analysis and mitigation of this phenomenon is hampered by the complex relationship between plasticity, exploration, and performance in RL. This paper introduces plasticity injection, a minimalistic intervention that increases the network plasticity without changing the number of trainable parameters or biasing the predictions. The applications of this intervention are two-fold: first, as a diagnostic tool $\unicode{x2014}$ if injection increases the performance, we may conclude that an agent's network was losing its plasticity. This tool allows us to identify a subset of Atari environments where the lack of plasticity causes performance plateaus, motivating future studies on understanding and combating plasticity loss. Second, plasticity injection can be used to improve the computational efficiency of RL training if the agent has to re-learn from scratch due to exhausted plasticity or by growing the agent's network dynamically without compromising performance. The results on Atari show that plasticity injection attains stronger performance compared to alternative methods while being computationally efficient.
An Analysis of Quantile Temporal-Difference Learning
Rowland, Mark, Munos, Rémi, Azar, Mohammad Gheshlaghi, Tang, Yunhao, Ostrovski, Georg, Harutyunyan, Anna, Tuyls, Karl, Bellemare, Marc G., Dabney, Will
We analyse quantile temporal-difference learning (QTD), a distributional reinforcement learning algorithm that has proven to be a key component in several successful large-scale applications of reinforcement learning. Despite these empirical successes, a theoretical understanding of QTD has proven elusive until now. Unlike classical TD learning, which can be analysed with standard stochastic approximation tools, QTD updates do not approximate contraction mappings, are highly non-linear, and may have multiple fixed points. The core result of this paper is a proof of convergence to the fixed points of a related family of dynamic programming procedures with probability 1, putting QTD on firm theoretical footing. The proof establishes connections between QTD and non-linear differential inclusions through stochastic approximation theory and non-smooth analysis.
The Difficulty of Passive Learning in Deep Reinforcement Learning
Ostrovski, Georg, Castro, Pablo Samuel, Dabney, Will
Learning to act from observational data without active environmental interaction is a well-known challenge in Reinforcement Learning (RL). Recent approaches involve constraints on the learned policy or conservative updates, preventing strong deviations from the state-action distribution of the dataset. Although these methods are evaluated using non-linear function approximation, theoretical justifications are mostly limited to the tabular or linear cases. Given the impressive results of deep reinforcement learning, we argue for a need to more clearly understand the challenges in this setting. In the vein of Held & Hein's classic 1963 experiment, we propose the "tandem learning" experimental paradigm which facilitates our empirical analysis of the difficulties in offline reinforcement learning. We identify function approximation in conjunction with fixed data distributions as the strongest factors, thereby extending but also challenging hypotheses stated in past work. Our results provide relevant insights for offline deep reinforcement learning, while also shedding new light on phenomena observed in the online case of learning control.
When should agents explore?
Pîslar, Miruna, Szepesvari, David, Ostrovski, Georg, Borsa, Diana, Schaul, Tom
Exploration remains a central challenge for reinforcement learning (RL). Virtually all existing methods share the feature of a monolithic behaviour policy that changes only gradually (at best). In contrast, the exploratory behaviours of animals and humans exhibit a rich diversity, namely including forms of switching between modes. This paper presents an initial study of mode-switching, non-monolithic exploration for RL. We investigate different modes to switch between, at what timescales it makes sense to switch, and what signals make for good switching triggers. We also propose practical algorithmic components that make the switching mechanism adaptive and robust, which enables flexibility without an accompanying hyper-parameter-tuning burden. Finally, we report a promising and detailed analysis on Atari, using two-mode exploration and switching at sub-episodic time-scales.
Return-based Scaling: Yet Another Normalisation Trick for Deep RL
Schaul, Tom, Ostrovski, Georg, Kemaev, Iurii, Borsa, Diana
Scaling issues are mundane yet irritating for practitioners of reinforcement learning. Error scales vary across domains, tasks, and stages of learning; sometimes by many orders of magnitude. This can be detrimental to learning speed and stability, create interference between learning tasks, and necessitate substantial tuning. We revisit this topic for agents based on temporal-difference learning, sketch out some desiderata and investigate scenarios where simple fixes fall short. The mechanism we propose requires neither tuning, clipping, nor adaptation. We validate its effectiveness and robustness on the suite of Atari games. Our scaling method turns out to be particularly helpful at mitigating interference, when training a shared neural network on multiple targets that differ in reward scale or discounting.
Temporally-Extended {\epsilon}-Greedy Exploration
Dabney, Will, Ostrovski, Georg, Barreto, André
Recent work on exploration in reinforcement learning (RL) has led to a series of increasingly complex solutions to the problem. This increase in complexity often comes at the expense of generality. Recent empirical studies suggest that, when applied to a broader set of domains, some sophisticated exploration methods are outperformed by simpler counterparts, such as {\epsilon}-greedy. In this paper we propose an exploration algorithm that retains the simplicity of {\epsilon}-greedy while reducing dithering. We build on a simple hypothesis: the main limitation of {\epsilon}-greedy exploration is its lack of temporal persistence, which limits its ability to escape local optima. We propose a temporally extended form of {\epsilon}-greedy that simply repeats the sampled action for a random duration. It turns out that, for many duration distributions, this suffices to improve exploration on a large set of domains. Interestingly, a class of distributions inspired by ecological models of animal foraging behaviour yields particularly strong performance.
Implicit Quantile Networks for Distributional Reinforcement Learning
Dabney, Will, Ostrovski, Georg, Silver, David, Munos, Rémi
In this work, we build on recent advances in distributional reinforcement learning to give a generally applicable, flexible, and state-of-the-art distributional variant of DQN. We achieve this by using quantile regression to approximate the full quantile function for the state-action return distribution. By reparameterizing a distribution over the sample space, this yields an implicitly defined return distribution and gives rise to a large class of risk-sensitive policies. We demonstrate improved performance on the 57 Atari 2600 games in the ALE, and use our algorithm's implicitly defined distributions to study the effects of risk-sensitive policies in Atari games.
Autoregressive Quantile Networks for Generative Modeling
Ostrovski, Georg, Dabney, Will, Munos, Rémi
We introduce autoregressive implicit quantile networks (AIQN), a fundamentally different approach to generative modeling than those commonly used, that implicitly captures the distribution using quantile regression. AIQN is able to achieve superior perceptual quality and improvements in evaluation metrics, without incurring a loss of sample diversity. The method can be applied to many existing models and architectures. In this work we extend the PixelCNN model with AIQN and demonstrate results on CIFAR-10 and ImageNet using Inception score, FID, non-cherry-picked samples, and inpainting results. We consistently observe that AIQN yields a highly stable algorithm that improves perceptual quality while maintaining a highly diverse distribution.
Rainbow: Combining Improvements in Deep Reinforcement Learning
Hessel, Matteo (DeepMind) | Modayil, Joseph (DeepMind) | Hasselt, Hado van (DeepMind) | Schaul, Tom (DeepMind) | Ostrovski, Georg (DeepMind) | Dabney, Will (DeepMind) | Horgan, Dan (DeepMind) | Piot, Bilal (DeepMind) | Azar, Mohammad (DeepMind) | Silver, David (DeepMind)
The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.
Unifying Count-Based Exploration and Intrinsic Motivation
Bellemare, Marc, Srinivasan, Sriram, Ostrovski, Georg, Schaul, Tom, Saxton, David, Munos, Remi
We consider an agent's uncertainty about its environment and the problem of generalizing this uncertainty across states. Specifically, we focus on the problem of exploration in non-tabular reinforcement learning. Drawing inspiration from the intrinsic motivation literature, we use density models to measure uncertainty, and propose a novel algorithm for deriving a pseudo-count from an arbitrary density model. This technique enables us to generalize count-based exploration algorithms to the non-tabular case. We apply our ideas to Atari 2600 games, providing sensible pseudo-counts from raw pixels. We transform these pseudo-counts into exploration bonuses and obtain significantly improved exploration in a number of hard games, including the infamously difficult Montezuma's Revenge.