Goto

Collaborating Authors

 Oregi, Izaskun


On the Transfer of Knowledge in Quantum Algorithms

arXiv.org Artificial Intelligence

The field of quantum computing is generating significant anticipation within the scientific and industrial communities due to its potential to revolutionize computing paradigms. Recognizing this potential, this paper explores the integration of transfer of knowledge techniques, traditionally used in classical artificial intelligence, into quantum computing. We present a comprehensive classification of the transfer models, focusing on Transfer Learning and Transfer Optimization. Additionally, we analyze relevant schemes in quantum computing that can benefit from knowledge sharing, and we delve into the potential synergies, supported by theoretical insights and initial experimental results. Our findings suggest that leveraging the transfer of knowledge can enhance the efficiency and effectiveness of quantum algorithms, particularly in the context of hybrid solvers. This approach not only accelerates the optimization process but also reduces the computational burden on quantum processors, making it a valuable tool for advancing quantum computing technologies.


Hybrid Approach for Solving Real-World Bin Packing Problem Instances Using Quantum Annealers

arXiv.org Artificial Intelligence

Efficient packing of items into bins is a common daily task. Known as Bin Packing Problem, it has been intensively studied in the field of artificial intelligence, thanks to the wide interest from industry and logistics. Since decades, many variants have been proposed, with the three-dimensional Bin Packing Problem as the closest one to real-world use cases. We introduce a hybrid quantum-classical framework for solving real-world three-dimensional Bin Packing Problems (Q4RealBPP), considering different realistic characteristics, such as: i) package and bin dimensions, ii) overweight restrictions, iii) affinities among item categories and iv) preferences for item ordering. Q4RealBPP permits the solving of real-world oriented instances of 3dBPP, contemplating restrictions well appreciated by industrial and logistics sectors.


Focusing on the Hybrid Quantum Computing -- Tabu Search Algorithm: new results on the Asymmetric Salesman Problem

arXiv.org Artificial Intelligence

Quantum Computing is an emerging paradigm which is gathering a lot of popularity in the current scientific and technological community. Widely conceived as the next frontier of computation, Quantum Computing is still at the dawn of its development being current solving systems suffering from significant limitations in terms of performance and capabilities. Some interesting approaches have been devised by researchers and practitioners in order to overcome these barriers, being quantum-classical hybrid algorithms one of the most often used solving schemes. The main goal of this paper is to extend the results and findings of the recently proposed hybrid Quantum Computing - Tabu Search Algorithm for partitioning problems. To do that, we focus our research on the adaptation of this method to the Asymmetric Traveling Salesman Problem. In overall, we have employed six well-known instances belonging to TSPLIB to assess the performance of Quantum Computing - Tabu Search Algorithm in comparison to QBSolv -- a state-of-the-art decomposing solver. Furthermore, as an additional contribution, this work also supposes the first solver of the Asymmetric Traveling Salesman Problem using a Quantum Computing based method. Aiming to boost whole community's research in QC, we have released the project's repository as open source code for further application and improvements.


Hybrid Quantum Computing -- Tabu Search Algorithm for Partitioning Problems: preliminary study on the Traveling Salesman Problem

arXiv.org Artificial Intelligence

Quantum Computing is considered as the next frontier in computing, and it is attracting a lot of attention from the current scientific community. This kind of computation provides to researchers with a revolutionary paradigm for addressing complex optimization problems, offering a significant speed advantage and an efficient search ability. Anyway, despite hopes placed in this field are high, Quantum Computing is still in an incipient stage of development. For this reason, present architectures show certain limitations in terms of computational capabilities and performance. These limitations have motivated the carrying out of this paper. With this paper, we contribute to the field introducing a novel solving scheme coined as hybrid Quantum Computing - Tabu Search Algorithm. Main pillars of operation of the proposed method are a greater control over the access to quantum resources, and a considerable reduction of non-profitable accesses. For assessing the quality of our method, we have used the well-known TSP as benchmarking problem. Furthermore, the performance of QTA has been compared with QBSolv -- a state-of-the-art decomposing solver -- on a set of 7 different TSP instances. The obtained experimental outcomes support the preliminary conclusion that QTA is an approach which offers promising results for solving partitioning problems, while it drastically reduces the access to QC resources. Furthermore, we also contribute in this paper to the field of Transfer Optimization by developing and using a evolutionary multiform multitasking algorithm as initialization method for the introduced hybrid Quantum Computing - Tabu Search Algorithm. Concretely, the evolutionary multitasking algorithm implemented is a multiform variant of the recently published Coevolutionary Variable Neighborhood Search Algorithm for Discrete Multitasking.


Exploiting a Stimuli Encoding Scheme of Spiking Neural Networks for Stream Learning

arXiv.org Artificial Intelligence

One of the most promising techniques in stream learning is the Spiking Neural Network, and some of them use an interesting population encoding scheme to transform the incoming stimuli into spikes. This study sheds lights on the key issue of this encoding scheme, the Gaussian receptive fields, and focuses on applying them as a pre-processing technique to any dataset in order to gain representativeness, and to boost the predictive performance of the stream learning methods. Experiments with synthetic and real data sets are presented, and lead to confirm that our approach can be applied successfully as a general pre-processing technique in many real cases. Keywords: Stream learning, gaussian receptive fields, population encoding, spiking neural networks 1. Introduction The continuous production of tremendous amount of data in the form of fast streams upsets the traditional view in machine learning, thus giving rise to a new emerging paradigm called stream learning (SL). These streams of data evolve generally over time and may be occasionally affected by a change (concept drift) which impacts on their input data distribution, without following the fundamental hypothesis of stationarity upon which the learning theory is based. Learning in non-stationary environments has attracted much attention in the SL community in Corresponding author: jesus.lopez@tecnalia.com