Goto

Collaborating Authors

 Ordyniak, Sebastian


Solving Quantified Boolean Formulas with Few Existential Variables

arXiv.org Artificial Intelligence

The quantified Boolean formula (QBF) problem is an important decision problem generally viewed as the archetype for PSPACE-completeness. Many problems of central interest in AI are in general not included in NP, e.g., planning, model checking, and non-monotonic reasoning, and for such problems QBF has successfully been used as a modelling tool. However, solvers for QBF are not as advanced as state of the art SAT solvers, which has prevented QBF from becoming a universal modelling language for PSPACE-complete problems. A theoretical explanation is that QBF (as well as many other PSPACE-complete problems) lacks natural parameters} guaranteeing fixed-parameter tractability (FPT). In this paper we tackle this problem and consider a simple but overlooked parameter: the number of existentially quantified variables. This natural parameter is virtually unexplored in the literature which one might find surprising given the general scarcity of FPT algorithms for QBF. Via this parameterization we then develop a novel FPT algorithm applicable to QBF instances in conjunctive normal form (CNF) of bounded clause length. We complement this by a W[1]-hardness result for QBF in CNF of unbounded clause length as well as sharper lower bounds for the bounded arity case under the (strong) exponential-time hypothesis.


The Complexity of Envy-Free Graph Cutting

arXiv.org Artificial Intelligence

We consider the problem of fairly dividing a set of heterogeneous divisible resources among agents with different preferences. We focus on the setting where the resources correspond to the edges of a connected graph, every agent must be assigned a connected piece of this graph, and the fairness notion considered is the classical envy freeness. The problem is NP-complete, and we analyze its complexity with respect to two natural complexity measures: the number of agents and the number of edges in the graph. While the problem remains NP-hard even for instances with 2 agents, we provide a dichotomy characterizing the complexity of the problem when the number of agents is constant based on structural properties of the graph. For the latter case, we design a polynomial-time algorithm when the graph has a constant number of edges.


Computational Short Cuts in Infinite Domain Constraint Satisfaction

arXiv.org Artificial Intelligence

A backdoor in a finite-domain CSP instance is a set of variables where each possible instantiation moves the instance into a polynomial-time solvable class. Backdoors have found many applications in artificial intelligence and elsewhere, and the algorithmic problem of finding such backdoors has consequently been intensively studied. Sioutis and Janhunen (Proc. 42nd German Conference on AI (KI-2019)) have proposed a generalised backdoor concept suitable for infinite-domain CSP instances over binary constraints. We generalise their concept into a large class of CSPs that allow for higher-arity constraints. We show that this kind of infinite-domain backdoors have many of the positive computational properties that finite-domain backdoors have: the associated computational problems are fixed-parameter tractable whenever the underlying constraint language is finite. On the other hand, we show that infinite languages make the problems considerably harder: the general backdoor detection problem is W[2]-hard and fixed-parameter tractability is ruled out under standard complexity-theoretic assumptions. We demonstrate that backdoors may have suboptimal behaviour on binary constraints -- this is detrimental from an AI perspective where binary constraints are predominant in, for instance, spatiotemporal applications. In response to this, we introduce sidedoors as an alternative to backdoors. The fundamental computational problems for sidedoors remain fixed-parameter tractable for finite constraint language (possibly also containing non-binary relations). Moreover, the sidedoor approach has appealing computational properties that sometimes leads to faster algorithms than the backdoor approach.


Computational Short Cuts in Infinite Domain Constraint Satisfaction

Journal of Artificial Intelligence Research

A backdoor in a finite-domain CSP instance is a set of variables where each possible instantiation moves the instance into a polynomial-time solvable class. Backdoors have found many applications in artificial intelligence and elsewhere, and the algorithmic problem of finding such backdoors has consequently been intensively studied. Sioutis and Janhunen have proposed a generalised backdoor concept suitable for infinite-domain CSP instances over binary constraints. We generalise their concept into a large class of CSPs that allow for higher-arity constraints. We show that this kind of infinite-domain backdoors have many of the positive computational properties that finite-domain backdoors have: the associated computational problems are fixed parameter tractable whenever the underlying constraint language is finite. On the other hand, we show that infinite languages make the problems considerably harder: the general backdoor detection problem is W[2]-hard and fixed-parameter tractability is ruled out under standard complexity-theoretic assumptions. We demonstrate that backdoors may have suboptimal behaviour on binary constraints—this is detrimental from an AI perspective where binary constraints are predominant in, for instance, spatiotemporal applications. In response to this, we introduce sidedoors as an alternative to backdoors. The fundamental computational problems for sidedoors remain fixed-parameter tractable for finite constraint language (possibly also containing non-binary relations). Moreover, the sidedoor approach has appealing computational properties that sometimes leads to faster algorithms than the backdoor approach.


Solving Infinite-Domain CSPs Using the Patchwork Property

arXiv.org Artificial Intelligence

The constraint satisfaction problem (CSP) has important applications in computer science and AI. In particular, infinite-domain CSPs have been intensively used in subareas of AI such as spatio-temporal reasoning. Since constraint satisfaction is a computationally hard problem, much work has been devoted to identifying restricted problems that are efficiently solvable. One way of doing this is to restrict the interactions of variables and constraints, and a highly successful approach is to bound the treewidth of the underlying primal graph. Bodirsky & Dalmau [J. Comput. System. Sci. 79(1), 2013] and Huang et al. [Artif. Intell. 195, 2013] proved that CSP$(\Gamma)$ can be solved in $n^{f(w)}$ time (where $n$ is the size of the instance, $w$ is the treewidth of the primal graph and $f$ is a computable function) for certain classes of constraint languages $\Gamma$. We improve this bound to $f(w) \cdot n^{O(1)}$, where the function $f$ only depends on the language $\Gamma$, for CSPs whose basic relations have the patchwork property. Hence, such problems are fixed-parameter tractable and our algorithm is asymptotically faster than the previous ones. Additionally, our approach is not restricted to binary constraints, so it is applicable to a strictly larger class of problems than that of Huang et al. However, there exist natural problems that are covered by Bodirsky & Dalmau's algorithm but not by ours, and we begin investigating ways of generalising our results to larger families of languages. We also analyse our algorithm with respect to its running time and show that it is optimal (under the Exponential Time Hypothesis) for certain languages such as Allen's Interval Algebra.


Going Beyond Primal Treewidth for (M)ILP

AAAI Conferences

Integer Linear Programming (ILP) and its mixed variant (MILP) are archetypical examples of NP-complete optimization problems which have a wide range of applications in various areas of artificial intelligence. However, we still lack a thorough understanding of which structural restrictions make these problems tractable. Here we focus on structure captured via so-called decompositional parameters, which have been highly successful in fields such as boolean satisfiability and constraint satisfaction but have not yet reached their full potential in the ILP setting. In particular, primal treewidth (an established decompositional parameter) can only be algorithmically exploited to solve ILP under restricted circumstances. Our main contribution is the introduction and algorithmic exploitation of two new decompositional parameters for ILP and MILP. The first, torso-width, is specifically tailored to the linear programming setting and is the first decompositional parameter which can also be used for MILP. The latter, incidence treewidth, is a concept which originates from boolean satisfiability but has not yet been used in the ILP setting; here we obtain a full complexity landscape mapping the precise conditions under which incidence treewidth can be used to obtain efficient algorithms. Both of these parameters overcome previous shortcomings of primal treewidth for ILP in unique ways, and consequently push the frontiers of tractability for these important problems.


Clique-Width and Directed Width Measures for Answer-Set Programming

arXiv.org Artificial Intelligence

Disjunctive Answer Set Programming (ASP) is a powerful declarative programming paradigm whose main decision problems are located on the second level of the polynomial hierarchy. Identifying tractable fragments and developing efficient algorithms for such fragments are thus important objectives in order to complement the sophisticated ASP systems available to date. Hard problems can become tractable if some problem parameter is bounded by a fixed constant; such problems are then called fixed-parameter tractable (FPT). While several FPT results for ASP exist, parameters that relate to directed or signed graphs representing the program at hand have been neglected so far. In this paper, we first give some negative observations showing that directed width measures on the dependency graph of a program do not lead to FPT results. We then consider the graph parameter of signed clique-width and present a novel dynamic programming algorithm that is FPT w.r.t. this parameter. Clique-width is more general than the well-known treewidth, and, to the best of our knowledge, ours is the first FPT algorithm for bounded clique-width for reasoning problems beyond SAT.


Backdoors into Heterogeneous Classes of SAT and CSP

arXiv.org Artificial Intelligence

In this paper we extend the classical notion of strong and weak backdoor sets for SAT and CSP by allowing that different instantiations of the backdoor variables result in instances that belong to different base classes; the union of the base classes forms a heterogeneous base class. Backdoor sets to heterogeneous base classes can be much smaller than backdoor sets to homogeneous ones, hence they are much more desirable but possibly harder to find. We draw a detailed complexity landscape for the problem of detecting strong and weak backdoor sets into heterogeneous base classes for SAT and CSP.


Using Decomposition-Parameters for QBF: Mind the Prefix!

AAAI Conferences

Similar to the satisfiability (SAT) problem, which can be seen to be the archetypical problem for NP, the quantified Boolean formula problem (QBF) is the archetypical problem for PSPACE. Recently, Atserias and Oliva (2014) showed that, unlike for SAT, many of the well-known decompositional parameters (such as treewidth and pathwidth) do not allow efficient algorithms for QBF. The main reason for this seems to be the lack of awareness of these parameters towards the dependencies between variables of a QBF formula. In this paper we extend the ordinary pathwidth to the QBF-setting by introducing prefix pathwidth, which takes into account the dependencies between variables in a QBF, and show that it leads to an efficient algorithm for QBF. We hope that our approach will help to initiate the study of novel tailor-made decompositional parameters for QBF and thereby help to lift the success of these decompositional parameters from SAT to QBF.


The Complexity Landscape of Decompositional Parameters for ILP

AAAI Conferences

Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using entirely different techniques, we identify new tractable fragments of ILP by studying structural parameterizations of the constraint matrix within the framework of parameterized complexity. In particular, we show that ILP is fixed-parameter tractable when parameterized by the treedepth of the constraint matrix and the maximum absolute value of any coefficient occurring in the ILP instance. Together with matching hardness results for the more general parameter treewidth, we draw a detailed complexity landscape of ILP w.r.t. decompositional parameters defined on the constraint matrix.