Omitaomu, Olufemi A.
Establishing Nationwide Power System Vulnerability Index across US Counties Using Interpretable Machine Learning
Ma, Junwei, Li, Bo, Omitaomu, Olufemi A., Mostafavi, Ali
Power outages have become increasingly frequent, intense, and prolonged in the US due to climate change, aging electrical grids, and rising energy demand. However, largely due to the absence of granular spatiotemporal outage data, we lack data-driven evidence and analytics-based metrics to quantify power system vulnerability. This limitation has hindered the ability to effectively evaluate and address vulnerability to power outages in US communities. Here, we collected ~179 million power outage records at 15-minute intervals across 3022 US contiguous counties (96.15% of the area) from 2014 to 2023. We developed a power system vulnerability assessment framework based on three dimensions (intensity, frequency, and duration) and applied interpretable machine learning models (XGBoost and SHAP) to compute Power System Vulnerability Index (PSVI) at the county level. Our analysis reveals a consistent increase in power system vulnerability over the past decade. We identified 318 counties across 45 states as hotspots for high power system vulnerability, particularly in the West Coast (California and Washington), the East Coast (Florida and the Northeast area), the Great Lakes megalopolis (Chicago-Detroit metropolitan areas), and the Gulf of Mexico (Texas). Heterogeneity analysis indicates that urban counties, counties with interconnected grids, and states with high solar generation exhibit significantly higher vulnerability. Our results highlight the significance of the proposed PSVI for evaluating the vulnerability of communities to power outages. The findings underscore the widespread and pervasive impact of power outages across the country and offer crucial insights to support infrastructure operators, policymakers, and emergency managers in formulating policies and programs aimed at enhancing the resilience of the US power infrastructure.
Towards Next-Generation Urban Decision Support Systems through AI-Powered Generation of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation
Tupayachi, Jose, Xu, Haowen, Omitaomu, Olufemi A., Camur, Mustafa Can, Sharmin, Aliza, Li, Xueping
The incorporation of Artificial Intelligence (AI) models into various optimization systems is on the rise. Yet, addressing complex urban and environmental management problems normally requires in-depth domain science and informatics expertise. This expertise is essential for deriving data and simulation-driven for informed decision support. In this context, we investigate the potential of leveraging the pre-trained Large Language Models (LLMs). By adopting ChatGPT API as the reasoning core, we outline an integrated workflow that encompasses natural language processing, methontology-based prompt tuning, and transformers. This workflow automates the creation of scenario-based ontology using existing research articles and technical manuals of urban datasets and simulations. The outcomes of our methodology are knowledge graphs in widely adopted ontology languages (e.g., OWL, RDF, SPARQL). These facilitate the development of urban decision support systems by enhancing the data and metadata modeling, the integration of complex datasets, the coupling of multi-domain simulation models, and the formulation of decision-making metrics and workflow. The feasibility of our methodology is evaluated through a comparative analysis that juxtaposes our AI-generated ontology with the well-known Pizza Ontology employed in tutorials for popular ontology software (e.g., prot\'eg\'e). We close with a real-world case study of optimizing the complex urban system of multi-modal freight transportation by generating anthologies of various domain data and simulations to support informed decision-making.