Goto

Collaborating Authors

 Omar, Reham


Dialogue Benchmark Generation from Knowledge Graphs with Cost-Effective Retrieval-Augmented LLMs

arXiv.org Artificial Intelligence

Dialogue benchmarks are crucial in training and evaluating chatbots engaging in domain-specific conversations. Knowledge graphs (KGs) represent semantically rich and well-organized data spanning various domains, such as DBLP, DBpedia, and YAGO. Traditionally, dialogue benchmarks have been manually created from documents, neglecting the potential of KGs in automating this process. Some question-answering benchmarks are automatically generated using extensive preprocessing from KGs, but they do not support dialogue generation. This paper introduces Chatty-Gen, a novel multi-stage retrieval-augmented generation platform for automatically generating high-quality dialogue benchmarks tailored to a specific domain using a KG. Chatty-Gen decomposes the generation process into manageable stages and uses assertion rules for automatic validation between stages. Our approach enables control over intermediate results to prevent time-consuming restarts due to hallucinations. It also reduces reliance on costly and more powerful commercial LLMs. Chatty-Gen eliminates upfront processing of the entire KG using efficient query-based retrieval to find representative subgraphs based on the dialogue context. Our experiments with several real and large KGs demonstrate that Chatty-Gen significantly outperforms state-of-the-art systems and ensures consistent model and system performance across multiple LLMs of diverse capabilities, such as GPT-4o, Gemini 1.5, Llama 3, and Mistral.


A Universal Question-Answering Platform for Knowledge Graphs

arXiv.org Artificial Intelligence

Knowledge from diverse application domains is organized as knowledge graphs (KGs) that are stored in RDF engines accessible in the web via SPARQL endpoints. Expressing a well-formed SPARQL query requires information about the graph structure and the exact URIs of its components, which is impractical for the average user. Question answering (QA) systems assist by translating natural language questions to SPARQL. Existing QA systems are typically based on application-specific human-curated rules, or require prior information, expensive pre-processing and model adaptation for each targeted KG. Therefore, they are hard to generalize to a broad set of applications and KGs. In this paper, we propose KGQAn, a universal QA system that does not need to be tailored to each target KG. Instead of curated rules, KGQAn introduces a novel formalization of question understanding as a text generation problem to convert a question into an intermediate abstract representation via a neural sequence-to-sequence model. We also develop a just-in-time linker that maps at query time the abstract representation to a SPARQL query for a specific KG, using only the publicly accessible APIs and the existing indices of the RDF store, without requiring any pre-processing. Our experiments with several real KGs demonstrate that KGQAn is easily deployed and outperforms by a large margin the state-of-the-art in terms of quality of answers and processing time, especially for arbitrary KGs, unseen during the training.


ChatGPT versus Traditional Question Answering for Knowledge Graphs: Current Status and Future Directions Towards Knowledge Graph Chatbots

arXiv.org Artificial Intelligence

Conversational AI and Question-Answering systems (QASs) for knowledge graphs (KGs) are both emerging research areas: they empower users with natural language interfaces for extracting information easily and effectively. Conversational AI simulates conversations with humans; however, it is limited by the data captured in the training datasets. In contrast, QASs retrieve the most recent information from a KG by understanding and translating the natural language question into a formal query supported by the database engine. In this paper, we present a comprehensive study of the characteristics of the existing alternatives towards combining both worlds into novel KG chatbots. Our framework compares two representative conversational models, ChatGPT and Galactica, against KGQAN, the current state-of-the-art QAS. We conduct a thorough evaluation using four real KGs across various application domains to identify the current limitations of each category of systems. Based on our findings, we propose open research opportunities to empower QASs with chatbot capabilities for KGs. All benchmarks and all raw results are available1 for further analysis.