Goto

Collaborating Authors

 Oltramari, Alessandro


Aligning Generalisation Between Humans and Machines

arXiv.org Artificial Intelligence

Recent advances in AI -- including generative approaches -- have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals. The responsible use of AI increasingly shows the need for human-AI teaming, necessitating effective interaction between humans and machines. A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise. In cognitive science, human generalisation commonly involves abstraction and concept learning. In contrast, AI generalisation encompasses out-of-domain generalisation in machine learning, rule-based reasoning in symbolic AI, and abstraction in neuro-symbolic AI. In this perspective paper, we combine insights from AI and cognitive science to identify key commonalities and differences across three dimensions: notions of generalisation, methods for generalisation, and evaluation of generalisation. We map the different conceptualisations of generalisation in AI and cognitive science along these three dimensions and consider their role in human-AI teaming. This results in interdisciplinary challenges across AI and cognitive science that must be tackled to provide a foundation for effective and cognitively supported alignment in human-AI teaming scenarios.


Enhancing Vision-Language Models with Scene Graphs for Traffic Accident Understanding

arXiv.org Artificial Intelligence

Recognizing a traffic accident is an essential part of any autonomous driving or road monitoring system. An accident can appear in a wide variety of forms, and understanding what type of accident is taking place may be useful to prevent it from reoccurring. The task of being able to classify a traffic scene as a specific type of accident is the focus of this work. We approach the problem by likening a traffic scene to a graph, where objects such as cars can be represented as nodes, and relative distances and directions between them as edges. This representation of an accident can be referred to as a scene graph, and is used as input for an accident classifier. Better results can be obtained with a classifier that fuses the scene graph input with representations from vision and language. This work introduces a multi-stage, multimodal pipeline to pre-process videos of traffic accidents, encode them as scene graphs, and align this representation with vision and language modalities for accident classification. When trained on 4 classes, our method achieves a balanced accuracy score of 57.77% on an (unbalanced) subset of the popular Detection of Traffic Anomaly (DoTA) benchmark, representing an increase of close to 5 percentage points from the case where scene graph information is not taken into account.


Traffic-Domain Video Question Answering with Automatic Captioning

arXiv.org Artificial Intelligence

Video Question Answering (VidQA) exhibits remarkable potential in facilitating advanced machine reasoning capabilities within the domains of Intelligent Traffic Monitoring and Intelligent Transportation Systems. Nevertheless, the integration of urban traffic scene knowledge into VidQA systems has received limited attention in previous research endeavors. In this work, we present a novel approach termed Traffic-domain Video Question Answering with Automatic Captioning (TRIVIA), which serves as a weak-supervision technique for infusing traffic-domain knowledge into large video-language models. Empirical findings obtained from the SUTD-TrafficQA task highlight the substantial enhancements achieved by TRIVIA, elevating the accuracy of representative video-language models by a remarkable 6.5 points (19.88%) compared to baseline settings. This pioneering methodology holds great promise for driving advancements in the field, inspiring researchers and practitioners alike to unlock the full potential of emerging video-language models in traffic-related applications.


A Study of Situational Reasoning for Traffic Understanding

arXiv.org Artificial Intelligence

Intelligent Traffic Monitoring (ITMo) technologies hold the potential for improving road safety/security and for enabling smart city infrastructure. Understanding traffic situations requires a complex fusion of perceptual information with domain-specific and causal commonsense knowledge. Whereas prior work has provided benchmarks and methods for traffic monitoring, it remains unclear whether models can effectively align these information sources and reason in novel scenarios. To address this assessment gap, we devise three novel text-based tasks for situational reasoning in the traffic domain: i) BDD-QA, which evaluates the ability of Language Models (LMs) to perform situational decision-making, ii) TV-QA, which assesses LMs' abilities to reason about complex event causality, and iii) HDT-QA, which evaluates the ability of models to solve human driving exams. We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work, based on natural language inference, commonsense knowledge-graph self-supervision, multi-QA joint training, and dense retrieval of domain information. We associate each method with a relevant knowledge source, including knowledge graphs, relevant benchmarks, and driving manuals. In extensive experiments, we benchmark various knowledge-aware methods against the three datasets, under zero-shot evaluation; we provide in-depth analyses of model performance on data partitions and examine model predictions categorically, to yield useful insights on traffic understanding, given different background knowledge and reasoning strategies.


Utilizing Background Knowledge for Robust Reasoning over Traffic Situations

arXiv.org Artificial Intelligence

Understanding novel situations in the traffic domain requires an intricate combination of domain-specific and causal commonsense knowledge. Prior work has provided sufficient perception-based modalities for traffic monitoring, in this paper, we focus on a complementary research aspect of Intelligent Transportation: traffic understanding. We scope our study to text-based methods and datasets given the abundant commonsense knowledge that can be extracted using language models from large corpus and knowledge graphs. We adopt three knowledge-driven approaches for zero-shot QA over traffic situations, based on prior natural language inference methods, commonsense models with knowledge graph self-supervision, and dense retriever-based models. We constructed two text-based multiple-choice question answering sets: BDD-QA for evaluating causal reasoning in the traffic domain and HDT-QA for measuring the possession of domain knowledge akin to human driving license tests. Among the methods, Unified-QA reaches the best performance on the BDD-QA dataset with the adaptation of multiple formats of question answers. Language models trained with inference information and commonsense knowledge are also good at predicting the cause and effect in the traffic domain but perform badly at answering human-driving QA sets. For such sets, DPR+Unified-QA performs the best due to its efficient knowledge extraction.


Generalizable Neuro-symbolic Systems for Commonsense Question Answering

arXiv.org Artificial Intelligence

This chapter illustrates how suitable neuro-symbolic models for language understanding can enable domain generalizability and robustness in downstream tasks. Different methods for integrating neural language models and knowledge graphs are discussed. The situations in which this combination is most appropriate are characterized, including quantitative evaluation and qualitative error analysis on a variety of commonsense question answering benchmark datasets.


Dimensions of Commonsense Knowledge

arXiv.org Artificial Intelligence

Commonsense knowledge is essential for many AI applications, including those in natural language processing, visual processing, and planning. Consequently, many sources that include commonsense knowledge have been designed and constructed over the past decades. Recently, the focus has been on large text-based sources, which facilitate easier integration with neural (language) models and application on textual tasks, typically at the expense of the semantics of the sources. Such practice prevents the harmonization of these sources, understanding their coverage and gaps, and may hinder the semantic alignment of their knowledge with downstream tasks. Efforts to consolidate commonsense knowledge have yielded partial success, but provide no clear path towards a comprehensive consolidation of existing commonsense knowledge. The ambition of this paper is to organize these sources around a common set of dimensions of commonsense knowledge. For this purpose, we survey a wide range of popular commonsense sources with a special focus on their relations. We consolidate these relations into 13 knowledge dimensions, each abstracting over more specific relations found in sources. This consolidation allows us to unify the separate sources and to compute indications of their coverage, overlap, and gaps with respect to the knowledge dimensions. Moreover, we analyze the impact of each dimension on downstream reasoning tasks that require commonsense knowledge, observing that the temporal and desire/goal dimensions are very beneficial for reasoning on current downstream tasks, while distinctness and lexical knowledge have little impact. These results reveal focus towards some dimensions in current evaluation, and potential neglect of others.


Knowledge-driven Self-supervision for Zero-shot Commonsense Question Answering

arXiv.org Artificial Intelligence

Recent developments in pre-trained neural language modeling have led to leaps in accuracy on commonsense question-answering benchmarks. However, there is increasing concern that models overfit to specific tasks, without learning to utilize external knowledge or perform general semantic reasoning. In contrast, zero-shot evaluations have shown promise as a more robust measure of a model's general reasoning abilities. In this paper, we propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks. Guided by a set of hypotheses, the framework studies how to transform various pre-existing knowledge resources into a form that is most effective for pre-training models. We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks. Extending on prior work, we devise and compare four constrained distractor-sampling strategies. We provide empirical results across five commonsense question-answering tasks with data generated from five external knowledge resources. We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks. In addition, both preserving the structure of the task as well as generating fair and informative questions help language models learn more effectively.



Mechanisms Meet Content: Integrating Cognitive Architectures And Ontologies

AAAI Conferences

Historically, approaches to human-level intelligence have divided between those emphasizing the mechanisms involved, such as cognitive architectures, and those focusing on the knowledge content, such as ontologies. In this paper we argue that in order to build cognitive systems capable of human-level event-recognition, a comprehensive infrastructure of perceptual and cognitive mechanisms coupled with high-level knowledge representations is required. In particular, our contribution focuses on an integrated modeling framework (the “Cognitive Engine”), where the learning and knowledge retrieval mechanisms of the ACT-R cognitive architecture are combined with integrated semantic resources for the purpose of event interpretation.