Olivier, Patrick
Validation of a recommender system for prompting omitted foods in online dietary assessment surveys
Osadchiy, Timur, Poliakov, Ivan, Olivier, Patrick, Rowland, Maisie, Foster, Emma
Recall assistance methods are among the key aspects that improve the accuracy of online dietary assessment surveys. These methods still mainly rely on experience of trained interviewers with nutritional background, but data driven approaches could improve cost-efficiency and scalability of automated dietary assessment. We evaluated the effectiveness of a recommender algorithm developed for an online dietary assessment system called Intake24, that automates the multiple-pass 24-hour recall method. The recommender builds a model of eating behavior from recalls collected in past surveys. Based on foods they have already selected, the model is used to remind respondents of associated foods that they may have omitted to report. The performance of prompts generated by the model was compared to that of prompts hand-coded by nutritionists in two dietary studies. The results of our studies demonstrate that the recommender system is able to capture a higher number of foods omitted by respondents of online dietary surveys than prompts hand-coded by nutritionists. However, the considerably lower precision of generated prompts indicates an opportunity for further improvement of the system.
The 1996 AAAI Spring Symposia Reports
Gil, Yolanda, Sen, Sandip, Kohane, Isaac, Olivier, Patrick, Nakata, Keiichi, Eugenio, Barbara Di, Green, Nancy, Dean, Thomas, Hearst, Marti, Nourbakhsh, Illah R.
The Association for the Advancement of Artificial Intelligence held its 1996 Spring Symposia Series on March 27 to 29 at Stanford University. This article contains summaries of the eight symposia that were conducted: (1) Acquisition, Learning, and Demonstration: Automating Tasks for Users; (2) Adaptation, Coevolution, and Learning in Multiagent Systems; (3) Artificial Intelligence in Medicine: Applications of Current Technologies; (4) Cognitive and Computational Models of Spatial Representation; (5) Computational Implicature: Computational Approaches to Interpreting and Generating Conversational Implicature; (6) Computational Issues in Learning Models of Dynamic Systems; (7) Machine Learning in Information Access; and (8) Planning with Incomplete Information for Robot Problems.
The 1996 AAAI Spring Symposia Reports
Gil, Yolanda, Sen, Sandip, Kohane, Isaac, Olivier, Patrick, Nakata, Keiichi, Eugenio, Barbara Di, Green, Nancy, Dean, Thomas, Hearst, Marti, Nourbakhsh, Illah R.
The Association for the Advancement of Artificial Intelligence held its 1996 Spring Symposia Series on March 27 to 29 at Stanford University. This article contains summaries of the eight symposia that were conducted: (1) Acquisition, Learning, and Demonstration: Automating Tasks for Users; (2) Adaptation, Coevolution, and Learning in Multiagent Systems; (3) Artificial Intelligence in Medicine: Applications of Current Technologies; (4) Cognitive and Computational Models of Spatial Representation; (5) Computational Implicature: Computational Approaches to Interpreting and Generating Conversational Implicature; (6) Computational Issues in Learning Models of Dynamic Systems; (7) Machine Learning in Information Access; and (8) Planning with Incomplete Information for Robot Problems.