Goto

Collaborating Authors

 Oliva, Junier


Towards Cost Sensitive Decision Making

arXiv.org Artificial Intelligence

Many real-world situations allow for the acquisition of additional relevant information when making decisions with limited or uncertain data. However, traditional RL approaches either require all features to be acquired beforehand (e.g. in a MDP) or regard part of them as missing data that cannot be acquired (e.g. in a POMDP). In this work, we consider RL models that may actively acquire features from the environment to improve the decision quality and certainty, while automatically balancing the cost of feature acquisition process and the reward of task decision process. We propose the Active-Acquisition POMDP and identify two types of the acquisition process for different application domains. In order to assist the agent in the actively-acquired partially-observed environment and alleviate the exploration-exploitation dilemma, we develop a model-based approach, where a deep generative model is utilized to capture the dependencies of the features and impute the unobserved features. The imputations essentially represent the beliefs of the agent. Equipped with the dynamics model, we develop hierarchical RL algorithms to resolve both types of the AA-POMDPs. Empirical results demonstrate that our approach achieves considerably better performance than existing POMDP-RL solutions.


Distribution Guided Active Feature Acquisition

arXiv.org Artificial Intelligence

Human agents routinely reason on instances with incomplete and muddied data (and weigh the cost of obtaining further features). In contrast, much of ML is devoted to the unrealistic, sterile environment where all features are observed and further information on an instance is obviated. Here we extend past static ML and develop an active feature acquisition (AFA) framework that interacts with the environment to obtain new information on-the-fly and can: 1) make inferences on an instance in the face of incomplete features, 2) determine a plan for feature acquisitions to obtain additional information on the instance at hand. We build our AFA framework on a backbone of understanding the information and conditional dependencies that are present in the data. First, we show how to build generative models that can capture dependencies over arbitrary subsets of features and employ these models for acquisitions in a greedy scheme. After, we show that it is possible to guide the training of RL agents for AFA via side-information and auxiliary rewards stemming from our generative models. We also examine two important factors for deploying AFA models in real-world scenarios, namely interpretability and robustness. Extensive experiments demonstrate the state-of-the-art performance of our AFA framework.


Localizing Anomalies via Multiscale Score Matching Analysis

arXiv.org Artificial Intelligence

Anomaly detection and localization in medical imaging remain critical challenges in healthcare. This paper introduces Spatial-MSMA (Multiscale Score Matching Analysis), a novel unsupervised method for anomaly localization in volumetric brain MRIs. Building upon the MSMA framework, our approach incorporates spatial information and conditional likelihoods to enhance anomaly detection capabilities. We employ a flexible normalizing flow model conditioned on patch positions and global image features to estimate patch-wise anomaly scores. The method is evaluated on a dataset of 1,650 T1- and T2-weighted brain MRIs from typically developing children, with simulated lesions added to the test set. Spatial-MSMA significantly outperforms existing methods, including reconstruction-based, generative-based, and interpretation-based approaches, in lesion detection and segmentation tasks. Our model achieves superior performance in both distance-based metrics (99th percentile Hausdorff Distance: $7.05 \pm 0.61$, Mean Surface Distance: $2.10 \pm 0.43$) and component-wise metrics (True Positive Rate: $0.83 \pm 0.01$, Positive Predictive Value: $0.96 \pm 0.01$). These results demonstrate Spatial-MSMA's potential for accurate and interpretable anomaly localization in medical imaging, with implications for improved diagnosis and treatment planning in clinical settings. Our code is available at~\url{https://github.com/ahsanMah/sade/}.


EMOE: Expansive Matching of Experts for Robust Uncertainty Based Rejection

arXiv.org Artificial Intelligence

Expansive Matching of Experts (EMOE) is a novel method that utilizes support-expanding, extrapolatory pseudo-labeling to improve prediction and uncertainty based rejection on out-of-distribution (OOD) points. We propose an expansive data augmentation technique that generates OOD instances in a latent space, and an empirical trial based approach to filter out augmented expansive points for pseudo-labeling. EMOE utilizes a diverse set of multiple base experts as pseudo-labelers on the augmented data to improve OOD performance through a shared MLP with multiple heads (one per expert). We demonstrate that EMOE achieves superior performance compared to state-of-the-art methods on tabular data.


A Unified Model for Longitudinal Multi-Modal Multi-View Prediction with Missingness

arXiv.org Artificial Intelligence

Medical records often consist of different modalities, such as images, text, and tabular information. Integrating all modalities offers a holistic view of a patient's condition, while analyzing them longitudinally provides a better understanding of disease progression. However, real-world longitudinal medical records present challenges: 1) patients may lack some or all of the data for a specific timepoint, and 2) certain modalities or views might be absent for all patients during a particular period. In this work, we introduce a unified model for longitudinal multi-modal multi-view prediction with missingness. Our method allows as many timepoints as desired for input, and aims to leverage all available data, regardless of their availability. We conduct extensive experiments on the knee osteoarthritis dataset from the Osteoarthritis Initiative for pain and Kellgren-Lawrence grade prediction at a future timepoint. We demonstrate the effectiveness of our method by comparing results from our unified model to specific models that use the same modality and view combinations during training and evaluation. We also show the benefit of having extended temporal data and provide post-hoc analysis for a deeper understanding of each modality/view's importance for different tasks.


Anomaly Detection via Gumbel Noise Score Matching

arXiv.org Artificial Intelligence

We propose Gumbel Noise Score Matching (GNSM), a novel unsupervised method to detect anomalies in categorical data. GNSM accomplishes this by estimating the scores, i.e. the gradients of log likelihoods w.r.t.~inputs, of continuously relaxed categorical distributions. We test our method on a suite of anomaly detection tabular datasets. GNSM achieves a consistently high performance across all experiments. We further demonstrate the flexibility of GNSM by applying it to image data where the model is tasked to detect poor segmentation predictions. Images ranked anomalous by GNSM show clear segmentation failures, with the outputs of GNSM strongly correlating with segmentation metrics computed on ground-truth. We outline the score matching training objective utilized by GNSM and provide an open-source implementation of our work.


Acquisition Conditioned Oracle for Nongreedy Active Feature Acquisition

arXiv.org Artificial Intelligence

We develop novel methodology for active feature acquisition (AFA), the study of how to sequentially acquire a dynamic (on a per instance basis) subset of features that minimizes acquisition costs whilst still yielding accurate predictions. The AFA framework can be useful in a myriad of domains, including health care applications where the cost of acquiring additional features for a patient (in terms of time, money, risk, etc.) can be weighed against the expected improvement to diagnostic performance. Previous approaches for AFA have employed either: deep learning RL techniques, which have difficulty training policies in the AFA MDP due to sparse rewards and a complicated action space; deep learning surrogate generative models, which require modeling complicated multidimensional conditional distributions; or greedy policies, which fail to account for how joint feature acquisitions can be informative together for better predictions. In this work we show that we can bypass many of these challenges with a novel, nonparametric oracle based approach, which we coin the acquisition conditioned oracle (ACO). Extensive experiments show the superiority of the ACO to state-of-the-art AFA methods when acquiring features for both predictions and general decision-making.


Deep Message Passing on Sets

arXiv.org Machine Learning

Modern methods for learning over graph input data have shown the fruitfulness of accounting for relationships among elements in a collection. However, most methods that learn over set input data use only rudimentary approaches to exploit intra-collection relationships. In this work we introduce Deep Message Passing on Sets (DMPS), a novel method that incorporates relational learning for sets. DMPS not only connects learning on graphs with learning on sets via deep kernel learning, but it also bridges message passing on sets and traditional diffusion dynamics commonly used in denoising models. Based on these connections, we develop two new blocks for relational learning on sets: the set-denoising block and the set-residual block . The former is motivated by the connection between message passing on general graphs and diffusion-based denoising models, whereas the latter is inspired by the well-known residual network. In addition to demonstrating the interpretability of our model by learning the true underlying relational structure experimentally, we also show the effectiveness of our approach on both synthetic and real-world datasets by achieving results that are competitive with or outperform the state-of-the-art.


Meta-Neighborhoods

arXiv.org Machine Learning

Traditional methods for training neural networks use training data just once, as it is discarded after training. Instead, in this work we also leverage the training data during testing to adjust the network and gain more expressivity. Our approach, named Meta-Neighborhoods, is developed under a multi-task learning framework and is a generalization of k-nearest neighbors methods. It can flexibly adapt network parameters w.r.t. different query data using their respective local neighborhood information. Local information is learned and stored in a dictionary of learnable neighbors rather than directly retrieved from the training set for greater flexibility and performance. The network parameters and the dictionary are optimized end-to-end via meta-learning. Extensive experiments demonstrate that Meta-Neighborhoods consistently improved classification and regression performance across various network architectures and datasets. We also observed superior improvements than other state-of-the-art meta-learning methods designed to improve supervised learning.


Multi-fidelity Gaussian Process Bandit Optimisation

Journal of Artificial Intelligence Research

In many scientific and engineering applications, we are tasked with the maximisation of an expensive to evaluate black box function f. Traditional settings for this problem assume just the availability of this single function. However, in many cases, cheap approximations to f may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of f in a small but promising region and speedily identify the optimum. We formalise this task as a multi-fidelity bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour and achieves better bounds on the regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.