Oliva, Aude
Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence
Granite Vision Team, null, Karlinsky, Leonid, Arbelle, Assaf, Daniels, Abraham, Nassar, Ahmed, Alfassi, Amit, Wu, Bo, Schwartz, Eli, Joshi, Dhiraj, Kondic, Jovana, Shabtay, Nimrod, Li, Pengyuan, Herzig, Roei, Abedin, Shafiq, Perek, Shaked, Harary, Sivan, Barzelay, Udi, Goldfarb, Adi Raz, Oliva, Aude, Wieles, Ben, Bhattacharjee, Bishwaranjan, Huang, Brandon, Auer, Christoph, Gutfreund, Dan, Beymer, David, Wood, David, Kuehne, Hilde, Hansen, Jacob, Shtok, Joseph, Wong, Ken, Bathen, Luis Angel, Mishra, Mayank, Lysak, Maksym, Dolfi, Michele, Yurochkin, Mikhail, Livathinos, Nikolaos, Harel, Nimrod, Azulai, Ophir, Naparstek, Oshri, de Lima, Rafael Teixeira, Panda, Rameswar, Doveh, Sivan, Gupta, Shubham, Das, Subhro, Zawad, Syed, Kim, Yusik, He, Zexue, Brooks, Alexander, Goodhart, Gabe, Govindjee, Anita, Leist, Derek, Ibrahim, Ibrahim, Soffer, Aya, Cox, David, Soule, Kate, Lastras, Luis, Desai, Nirmit, Ofek-koifman, Shila, Raghavan, Sriram, Syeda-Mahmood, Tanveer, Staar, Peter, Drory, Tal, Feris, Rogerio
Ensuring the safety of generative MLLMs is absolutely crucial in order to prevent harm, build trust, address ethical concerns, and enable their responsible deployment in real-world applications. Our results demonstrate that Granite Vision performs almost at par with baselines (despite being the lightest MLLM in the comparison pool) for VLM-as-a-Judge task. Notably, the addition of Safety Vectors to Granite Vision leads to a significant improvement in safety classification performance. We do acknowledge that further work needs to be done to improve high-level reasoning and correct occasional incorrect outputs to improve reliability in sensitive tasks, which require nuanced classification. To address these, we will incorporate more reasoning-focused and structure-related data into the training process in the future. In addition, we showed in this paper that finding safety vectors (SVs) in Granite Vision's attention heads led to significant improvements when safety tasks were reformulated as classification problems. Current reliance for SVs is on few-shot samples which are informative but may have limited scope in terms of capturing the range of possible safety issues that can be encountered. To further improve the model's ability to identify and address all safety concerns, we plan to investigate scaling up SVs using more training data in future research.
$\textit{Trans-LoRA}$: towards data-free Transferable Parameter Efficient Finetuning
Wang, Runqian, Ghosh, Soumya, Cox, David, Antognini, Diego, Oliva, Aude, Feris, Rogerio, Karlinsky, Leonid
Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning (PEFT) techniques that closely match full model fine-tune performance while requiring only a small number of additional parameters. These additional LoRA parameters are specific to the base model being adapted. When the base model needs to be deprecated and replaced with a new one, all the associated LoRA modules need to be re-trained. Such re-training requires access to the data used to train the LoRA for the original base model. This is especially problematic for commercial cloud applications where the LoRA modules and the base models are hosted by service providers who may not be allowed to host proprietary client task data. To address this challenge, we propose $\textit{Trans-LoRA}$ -- a novel method for lossless, nearly data-free transfer of LoRAs across base models. Our approach relies on synthetic data to transfer LoRA modules. Using large language models, we design a synthetic data generator to approximate the data-generating process of the $\textit{observed}$ task data subset. Training on the resulting synthetic dataset transfers LoRA modules to new models. We show the effectiveness of our approach using both LLama and Gemma model families. Our approach achieves lossless (mostly improved) LoRA transfer between models within and across different base model families, and even between different PEFT methods, on a wide variety of tasks.
Dense Training, Sparse Inference: Rethinking Training of Mixture-of-Experts Language Models
Pan, Bowen, Shen, Yikang, Liu, Haokun, Mishra, Mayank, Zhang, Gaoyuan, Oliva, Aude, Raffel, Colin, Panda, Rameswar
Mixture-of-Experts (MoE) language models can reduce computational costs by 2-4$\times$ compared to dense models without sacrificing performance, making them more efficient in computation-bounded scenarios. However, MoE models generally require 2-4$\times$ times more parameters to achieve comparable performance to a dense model, which incurs larger GPU memory requirements and makes MoE models less efficient in I/O-bounded scenarios like autoregressive generation. In this work, we propose a hybrid dense training and sparse inference framework for MoE models (DS-MoE) which achieves strong computation and parameter efficiency by employing dense computation across all experts during training and sparse computation during inference. Our experiments on training LLMs demonstrate that our DS-MoE models are more parameter-efficient than standard sparse MoEs and are on par with dense models in terms of total parameter size and performance while being computationally cheaper (activating 30-40% of the model's parameters). Performance tests using vLLM show that our DS-MoE-6B model runs up to $1.86\times$ faster than similar dense models like Mistral-7B, and between $1.50\times$ and $1.71\times$ faster than comparable MoEs, such as DeepSeekMoE-16B and Qwen1.5-MoE-A2.7B.
LangNav: Language as a Perceptual Representation for Navigation
Pan, Bowen, Panda, Rameswar, Jin, SouYoung, Feris, Rogerio, Oliva, Aude, Isola, Phillip, Kim, Yoon
We explore the use of language as a perceptual representation for vision-and-language navigation. Our approach uses off-the-shelf vision systems (for image captioning and object detection) to convert an agent's egocentric panoramic view at each time step into natural language descriptions. We then finetune a pretrained language model to select an action, based on the current view and the trajectory history, that would best fulfill the navigation instructions. In contrast to the standard setup which adapts a pretrained language model to work directly with continuous visual features from pretrained vision models, our approach instead uses (discrete) language as the perceptual representation. We explore two use cases of our language-based navigation (LangNav) approach on the R2R vision-and-language navigation benchmark: generating synthetic trajectories from a prompted large language model (GPT-4) with which to finetune a smaller language model; and sim-to-real transfer where we transfer a policy learned on a simulated environment (ALFRED) to a real-world environment (R2R). Our approach is found to improve upon strong baselines that rely on visual features in settings where only a few gold trajectories (10-100) are available, demonstrating the potential of using language as a perceptual representation for navigation tasks.
Going Beyond Nouns With Vision & Language Models Using Synthetic Data
Cascante-Bonilla, Paola, Shehada, Khaled, Smith, James Seale, Doveh, Sivan, Kim, Donghyun, Panda, Rameswar, Varol, Gรผl, Oliva, Aude, Ordonez, Vicente, Feris, Rogerio, Karlinsky, Leonid
Large-scale pre-trained Vision & Language (VL) models have shown remarkable performance in many applications, enabling replacing a fixed set of supported classes with zero-shot open vocabulary reasoning over (almost arbitrary) natural language prompts. However, recent works have uncovered a fundamental weakness of these models. For example, their difficulty to understand Visual Language Concepts (VLC) that go 'beyond nouns' such as the meaning of non-object words (e.g., attributes, actions, relations, states, etc.), or difficulty in performing compositional reasoning such as understanding the significance of the order of the words in a sentence. In this work, we investigate to which extent purely synthetic data could be leveraged to teach these models to overcome such shortcomings without compromising their zero-shot capabilities. We contribute Synthetic Visual Concepts (SyViC) - a million-scale synthetic dataset and data generation codebase allowing to generate additional suitable data to improve VLC understanding and compositional reasoning of VL models. Additionally, we propose a general VL finetuning strategy for effectively leveraging SyViC towards achieving these improvements. Our extensive experiments and ablations on VL-Checklist, Winoground, and ARO benchmarks demonstrate that it is possible to adapt strong pre-trained VL models with synthetic data significantly enhancing their VLC understanding (e.g. by 9.9% on ARO and 4.3% on VL-Checklist) with under 1% drop in their zero-shot accuracy.
Ego4D: Around the World in 3,000 Hours of Egocentric Video
Grauman, Kristen, Westbury, Andrew, Byrne, Eugene, Chavis, Zachary, Furnari, Antonino, Girdhar, Rohit, Hamburger, Jackson, Jiang, Hao, Liu, Miao, Liu, Xingyu, Martin, Miguel, Nagarajan, Tushar, Radosavovic, Ilija, Ramakrishnan, Santhosh Kumar, Ryan, Fiona, Sharma, Jayant, Wray, Michael, Xu, Mengmeng, Xu, Eric Zhongcong, Zhao, Chen, Bansal, Siddhant, Batra, Dhruv, Cartillier, Vincent, Crane, Sean, Do, Tien, Doulaty, Morrie, Erapalli, Akshay, Feichtenhofer, Christoph, Fragomeni, Adriano, Fu, Qichen, Fuegen, Christian, Gebreselasie, Abrham, Gonzalez, Cristina, Hillis, James, Huang, Xuhua, Huang, Yifei, Jia, Wenqi, Khoo, Weslie, Kolar, Jachym, Kottur, Satwik, Kumar, Anurag, Landini, Federico, Li, Chao, Li, Yanghao, Li, Zhenqiang, Mangalam, Karttikeya, Modhugu, Raghava, Munro, Jonathan, Murrell, Tullie, Nishiyasu, Takumi, Price, Will, Puentes, Paola Ruiz, Ramazanova, Merey, Sari, Leda, Somasundaram, Kiran, Southerland, Audrey, Sugano, Yusuke, Tao, Ruijie, Vo, Minh, Wang, Yuchen, Wu, Xindi, Yagi, Takuma, Zhu, Yunyi, Arbelaez, Pablo, Crandall, David, Damen, Dima, Farinella, Giovanni Maria, Ghanem, Bernard, Ithapu, Vamsi Krishna, Jawahar, C. V., Joo, Hanbyul, Kitani, Kris, Li, Haizhou, Newcombe, Richard, Oliva, Aude, Park, Hyun Soo, Rehg, James M., Sato, Yoichi, Shi, Jianbo, Shou, Mike Zheng, Torralba, Antonio, Torresani, Lorenzo, Yan, Mingfei, Malik, Jitendra
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,025 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 855 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition
Panda, Rameswar, Chen, Chun-Fu, Fan, Quanfu, Sun, Ximeng, Saenko, Kate, Oliva, Aude, Feris, Rogerio
Multi-modal learning, which focuses on utilizing various modalities to improve the performance of a model, is widely used in video recognition. While traditional multi-modal learning offers excellent recognition results, its computational expense limits its impact for many real-world applications. In this paper, we propose an adaptive multi-modal learning framework, called AdaMML, that selects on-the-fly the optimal modalities for each segment conditioned on the input for efficient video recognition. Specifically, given a video segment, a multi-modal policy network is used to decide what modalities should be used for processing by the recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on four challenging diverse datasets demonstrate that our proposed adaptive approach yields 35%-55% reduction in computation when compared to the traditional baseline that simply uses all the modalities irrespective of the input, while also achieving consistent improvements in accuracy over the state-of-the-art methods.
Paint by Word
Bau, David, Andonian, Alex, Cui, Audrey, Park, YeonHwan, Jahanian, Ali, Oliva, Aude, Torralba, Antonio
We investigate the problem of zero-shot semantic image painting. Instead of painting modifications into an image using only concrete colors or a finite set of semantic concepts, we ask how to create semantic paint based on open full-text descriptions: our goal is to be able to point to a location in a synthesized image and apply an arbitrary new concept such as "rustic" or "opulent" or "happy dog." To do this, our method combines a state-of-the art generative model of realistic images with a state-of-the-art text-image semantic similarity network. We find that, to make large changes, it is important to use non-gradient methods to explore latent space, and it is important to relax the computations of the GAN to target changes to a specific region. We conduct user studies to compare our methods to several baselines.
The Algonauts Project: A Platform for Communication between the Sciences of Biological and Artificial Intelligence
Cichy, Radoslaw Martin, Roig, Gemma, Andonian, Alex, Dwivedi, Kshitij, Lahner, Benjamin, Lascelles, Alex, Mohsenzadeh, Yalda, Ramakrishnan, Kandan, Oliva, Aude
In the last decade, artificial intelligence (AI) models inspired by the brain have made unprecedented progress in performing real-world perceptual tasks like object classification and speech recognition. Recently, researchers of natural intelligence have begun using those AI models to explore how the brain performs such tasks. These developments suggest that future progress will benefit from increased interaction between disciplines. Here we introduce the Algonauts Project as a structured and quantitative communication channel for interdisciplinary interaction between natural and artificial intelligence researchers. The project's core is an open challenge with a quantitative benchmark whose goal is to account for brain data through computational models. This project has the potential to provide better models of natural intelligence and to gather findings that advance AI. The 2019 Algonauts Project focuses on benchmarking computational models predicting human brain activity when people look at pictures of objects. The 2019 edition of the Algonauts Project is available online: http://algonauts.csail.mit.edu/.
Moments in Time Dataset: one million videos for event understanding
Monfort, Mathew, Andonian, Alex, Zhou, Bolei, Ramakrishnan, Kandan, Bargal, Sarah Adel, Yan, Tom, Brown, Lisa, Fan, Quanfu, Gutfruend, Dan, Vondrick, Carl, Oliva, Aude
We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and natural phenomena; visual and auditory events can be symmetrical in time ("opening" is "closing" in reverse), and either transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among 339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report results of several baseline models addressing separately, and jointly, three modalities: spatial, temporal and auditory. The Moments in Time dataset, designed to have a large coverage and diversity of events in both visual and auditory modalities, can serve as a new challenge to develop models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis.