Goto

Collaborating Authors

 Oli, Priti


Can LLMs Identify Gaps and Misconceptions in Students' Code Explanations?

arXiv.org Artificial Intelligence

This paper investigates various approaches using Large Language Models (LLMs) to identify gaps and misconceptions in students' self-explanations of specific instructional material, in our case explanations of code examples. This research is a part of our larger effort to automate the assessment of students' freely generated responses, focusing specifically on their self-explanations of code examples during activities related to code comprehension. In this work, we experiment with zero-shot prompting, Supervised Fine-Tuning (SFT), and preference alignment of LLMs to identify gaps in students' self-explanation. With simple prompting, GPT-4 consistently outperformed LLaMA3 and Mistral in identifying gaps and misconceptions, as confirmed by human evaluations. Additionally, our results suggest that fine-tuned large language models are more effective at identifying gaps in students' explanations compared to zero-shot and few-shot prompting techniques. Furthermore, our findings show that the preference optimization approach using Odds Ratio Preference Optimization (ORPO) outperforms SFT in identifying gaps and misconceptions in students' code explanations.


Automated Assessment of Students' Code Comprehension using LLMs

arXiv.org Artificial Intelligence

Assessing student's answers and in particular natural language answers is a crucial challenge in the field of education. Advances in machine learning, including transformer-based models such as Large Language Models(LLMs), have led to significant progress in various natural language tasks. Nevertheless, amidst the growing trend of evaluating LLMs across diverse tasks, evaluating LLMs in the realm of automated answer assesment has not received much attention. To address this gap, we explore the potential of using LLMs for automated assessment of student's short and open-ended answer. Particularly, we use LLMs to compare students' explanations with expert explanations in the context of line-by-line explanations of computer programs. For comparison purposes, we assess both Large Language Models (LLMs) and encoder-based Semantic Textual Similarity (STS) models in the context of assessing the correctness of students' explanation of computer code. Our findings indicate that LLMs, when prompted in few-shot and chain-of-thought setting perform comparable to fine-tuned encoder-based models in evaluating students' short answers in programming domain.


The Behavior of Large Language Models When Prompted to Generate Code Explanations

arXiv.org Artificial Intelligence

This paper systematically investigates the generation of code explanations by Large Language Models (LLMs) for code examples commonly encountered in introductory programming courses. Our findings reveal significant variations in the nature of code explanations produced by LLMs, influenced by factors such as the wording of the prompt, the specific code examples under consideration, the programming language involved, the temperature parameter, and the version of the LLM. However, a consistent pattern emerges for Java and Python, where explanations exhibit a Flesch-Kincaid readability level of approximately 7-8 grade and a consistent lexical density, indicating the proportion of meaningful words relative to the total explanation size. Additionally, the generated explanations consistently achieve high scores for correctness, but lower scores on three other metrics: completeness, conciseness, and specificity.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.


NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation

arXiv.org Artificial Intelligence

Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augmenter, a new participatory Python-based natural language augmentation framework which supports the creation of both transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of natural language tasks. We demonstrate the efficacy of NL-Augmenter by using several of its transformations to analyze the robustness of popular natural language models. The infrastructure, datacards and robustness analysis results are available publicly on the NL-Augmenter repository (\url{https://github.com/GEM-benchmark/NL-Augmenter}).