Goto

Collaborating Authors

 Okur, Eda


Inspecting Spoken Language Understanding from Kids for Basic Math Learning at Home

arXiv.org Artificial Intelligence

Enriching the quality of early childhood education with interactive math learning at home systems, empowered by recent advances in conversational AI technologies, is slowly becoming a reality. With this motivation, we implement a multimodal dialogue system to support play-based learning experiences at home, guiding kids to master basic math concepts. This work explores Spoken Language Understanding (SLU) pipeline within a task-oriented dialogue system developed for Kid Space, with cascading Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU) components evaluated on our home deployment data with kids going through gamified math learning activities. We validate the advantages of a multi-task architecture for NLU and experiment with a diverse set of pretrained language representations for Intent Recognition and Entity Extraction tasks in the math learning domain. To recognize kids' speech in realistic home environments, we investigate several ASR systems, including the commercial Google Cloud and the latest open-source Whisper solutions with varying model sizes. We evaluate the SLU pipeline by testing our best-performing NLU models on noisy ASR output to inspect the challenges of understanding children for math learning in authentic homes.


Position Matters! Empirical Study of Order Effect in Knowledge-grounded Dialogue

arXiv.org Artificial Intelligence

With the power of large pretrained language models, various research works have integrated knowledge into dialogue systems. The traditional techniques treat knowledge as part of the input sequence for the dialogue system, prepending a set of knowledge statements in front of dialogue history. However, such a mechanism forces knowledge sets to be concatenated in an ordered manner, making models implicitly pay imbalanced attention to the sets during training. In this paper, we first investigate how the order of the knowledge set can influence autoregressive dialogue systems' responses. We conduct experiments on two commonly used dialogue datasets with two types of transformer-based models and find that models view the input knowledge unequally. To this end, we propose a simple and novel technique to alleviate the order effect by modifying the position embeddings of knowledge input in these models. With the proposed position embedding method, the experimental results show that each knowledge statement is uniformly considered to generate responses.


End-to-End Evaluation of a Spoken Dialogue System for Learning Basic Mathematics

arXiv.org Artificial Intelligence

The advances in language-based Artificial Intelligence (AI) technologies applied to build educational applications can present AI for social-good opportunities with a broader positive impact. Across many disciplines, enhancing the quality of mathematics education is crucial in building critical thinking and problem-solving skills at younger ages. Conversational AI systems have started maturing to a point where they could play a significant role in helping students learn fundamental math concepts. This work presents a task-oriented Spoken Dialogue System (SDS) built to support play-based learning of basic math concepts for early childhood education. The system has been evaluated via real-world deployments at school while the students are practicing early math concepts with multimodal interactions. We discuss our efforts to improve the SDS pipeline built for math learning, for which we explore utilizing MathBERT representations for potential enhancement to the Natural Language Understanding (NLU) module. We perform an end-to-end evaluation using real-world deployment outputs from the Automatic Speech Recognition (ASR), Intent Recognition, and Dialogue Manager (DM) components to understand how error propagation affects the overall performance in real-world scenarios.


Detecting Behavioral Engagement of Students in the Wild Based on Contextual and Visual Data

arXiv.org Machine Learning

To investigate the detection of students' behavioral engagement (On-Task vs. Off-Task), we propose a two-phase approach in this study. In Phase 1, contextual logs (URLs) are utilized to assess active usage of the content platform. If there is active use, the appearance information is utilized in Phase 2 to infer behavioral engagement. Incorporating the contextual information improved the overall F1-scores from 0.77 to 0.82. Our cross-classroom and cross-platform experiments showed the proposed generic and multi-modal behavioral engagement models' applicability to a different set of students or different subject areas.


Unobtrusive and Multimodal Approach for Behavioral Engagement Detection of Students

arXiv.org Machine Learning

We propose a multimodal approach for detection of students' behavioral engagement states (i.e., On-Task vs. Off-Task), based on three unobtrusive modalities: Appearance, Context-Performance, and Mouse. Final behavioral engagement states are achieved by fusing modality-specific classifiers at the decision level. Various experiments were conducted on a student dataset collected in an authentic classroom.


The Importance of Socio-Cultural Differences for Annotating and Detecting the Affective States of Students

arXiv.org Machine Learning

The development of real-time affect detection models often depends upon obtaining annotated data for supervised learning by employing human experts to label the student data. One open question in annotating affective data for affect detection is whether the labelers (i.e., human experts) need to be socio-culturally similar to the students being labeled, as this impacts the cost feasibility of obtaining the labels. In this study, we investigate the following research questions: For affective state annotation, how does the socio-cultural background of human expert labelers, compared to the subjects, impact the degree of consensus and distribution of affective states obtained? Secondly, how do differences in labeler background impact the performance of affect detection models that are trained using these labels?


Named Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings

arXiv.org Machine Learning

Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervised method for learning continuous representations of words in vector space. We made use of these obtained word embeddings, together with language independent features that are engineered to work better on informal text types, for generating a Turkish NER system on microblog texts. We evaluated our Turkish NER system on Twitter messages and achieved better F-score performances than the published results of previously proposed NER systems on Turkish tweets. Since we did not employ any language dependent features, we believe that our method can be easily adapted to microblog texts in other morphologically rich languages.