Goto

Collaborating Authors

 Ojo, Jessica


IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models

arXiv.org Artificial Intelligence

Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g., African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench--a human-translated benchmark dataset for 16 typologicallydiverse low-resource African languages covering three tasks: natural language inference (AfriXNLI), mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings (where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages (such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Aya-101 only at 58% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like LLaMa 3 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.


How good are Large Language Models on African Languages?

arXiv.org Artificial Intelligence

Recent advancements in natural language processing have led to the proliferation of large language models (LLMs). These models have been shown to yield good performance, using in-context learning, even on tasks and languages they are not trained on. However, their performance on African languages is largely understudied relative to high-resource languages. We present an analysis of four popular large language models (mT0, Aya, LLaMa 2, and GPT-4) on six tasks (topic classification, sentiment classification, machine translation, summarization, question answering, and named entity recognition) across 60 African languages, spanning different language families and geographical regions. Our results suggest that all LLMs produce lower performance for African languages, and there is a large gap in performance compared to high-resource languages (such as English) for most tasks. We find that GPT-4 has an average to good performance on classification tasks, yet its performance on generative tasks such as machine translation and summarization is significantly lacking. Surprisingly, we find that mT0 had the best overall performance for cross-lingual QA, better than the state-of-the-art supervised model (i.e. fine-tuned mT5) and GPT-4 on African languages. Similarly, we find the recent Aya model to have comparable result to mT0 in almost all tasks except for topic classification where it outperform mT0. Overall, LLaMa 2 showed the worst performance, which we believe is due to its English and code-centric~(around 98%) pre-training corpus. Our findings confirms that performance on African languages continues to remain a hurdle for the current LLMs, underscoring the need for additional efforts to close this gap.


AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages

arXiv.org Artificial Intelligence

Despite the progress we have recorded in scaling multilingual machine translation (MT) models and evaluation data to several under-resourced African languages, it is difficult to measure accurately the progress we have made on these languages because evaluation is often performed on n-gram matching metrics like BLEU that often have worse correlation with human judgments. Embedding-based metrics such as COMET correlate better; however, lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with a simplified MQM guideline for error-span annotation and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET, a COMET evaluation metric for African languages by leveraging DA training data from high-resource languages and African-centric multilingual encoder (AfroXLM-Roberta) to create the state-of-the-art evaluation metric for African languages MT with respect to Spearman-rank correlation with human judgments (+0.406).


MasakhaNEWS: News Topic Classification for African languages

arXiv.org Artificial Intelligence

African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach.


How Good are Commercial Large Language Models on African Languages?

arXiv.org Artificial Intelligence

Recent advancements in Natural Language Processing (NLP) has led to the proliferation of large pretrained language models. These models have been shown to yield good performance, using in-context learning, even on unseen tasks and languages. They have also been exposed as commercial APIs as a form of language-model-as-a-service, with great adoption. However, their performance on African languages is largely unknown. We present a preliminary analysis of commercial large language models on two tasks (machine translation and text classification) across eight African languages, spanning different language families and geographical areas. Our results suggest that commercial language models produce below-par performance on African languages. We also find that they perform better on text classification than machine translation. In general, our findings present a call-to-action to ensure African languages are well represented in commercial large language models, given their growing popularity.