Goto

Collaborating Authors

 Oh, Yunhak


Subgraph Federated Learning for Local Generalization

arXiv.org Artificial Intelligence

Federated Learning (FL) on graphs enables collaborative model training to enhance performance without compromising the privacy of each client. However, existing methods often overlook the mutable nature of graph data, which frequently introduces new nodes and leads to shifts in label distribution. Since they focus solely on performing well on each client's local data, they are prone to overfitting to their local distributions (i.e., local overfitting), which hinders their ability to generalize to unseen data with diverse label distributions. In contrast, our proposed method, FedLoG, effectively tackles this issue by mitigating local overfitting. Our model generates global synthetic data by condensing the reliable information from each class representation and its structural information across clients. Using these synthetic data as a training set, we alleviate the local overfitting problem by adaptively generalizing the absent knowledge within each local dataset. This enhances the generalization capabilities of local models, enabling them to handle unseen data effectively. Our model outperforms baselines in our proposed experimental settings, which are designed to measure generalization power to unseen data in practical scenarios. Our code is available at https://github.com/sung-won-kim/FedLoG


3D Interaction Geometric Pre-training for Molecular Relational Learning

arXiv.org Artificial Intelligence

Molecular relational learning (MRL) focuses on understanding the interaction dynamics between molecules and has gained significant attention from researchers thanks to its diverse applications [20]. For instance, understanding how a medication dissolves in different solvents (medication-solvent interaction) is vital in pharmacy [30, 26, 3], while predicting the optical and photophysical properties of chromophores in various solvents (chromophore-solvent interaction) is essential for material discovery [16]. Because of the expensive time and financial costs associated with conducting wet lab experiments to test the interaction behavior of all possible molecular pairs [31], machine learning methods have been quickly embraced for MRL. Despite recent advancements in MRL, previous works tend to ignore molecules' 3D geometric information and instead focus solely on their 2D topological structures. However, in molecular science, the 3D geometric information of molecules (Figure 1 (a)) is crucial for understanding and predicting molecular behavior across various contexts, ranging from physical properties [1] to biological functions [10, 46]. This is particularly important in MRL, as geometric information plays a key role in molecular interactions by determining how molecules recognize, interact, and bind with one another in their interaction environment [34]. In traditional molecular dynamics simulations, explicit solvent models, which directly consider the detailed environment of molecular interaction, have demonstrated superior performance compared to implicit solvent models, which simplify the solvent as a continuous medium, highlighting the significance of explicitly modeling the complex geometries of interaction environments [47]. However, acquiring stereochemical structures of molecules is often very costly, resulting in limited availability of such 3D geometric information for downstream tasks [23].