Goto

Collaborating Authors

 Oh, Yoori


Distance Sampling-based Paraphraser Leveraging ChatGPT for Text Data Manipulation

arXiv.org Artificial Intelligence

There has been growing interest in audio-language retrieval research, where the objective is to establish the correlation between audio and text modalities. However, most audio-text paired datasets often lack rich expression of the text data compared to the audio samples. One of the significant challenges facing audio-text datasets is the presence of similar or identical captions despite different audio samples. Therefore, under many-to-one mapping conditions, audio-text datasets lead to poor performance of retrieval tasks. In this paper, we propose a novel approach to tackle the data imbalance problem in audio-language retrieval task. To overcome the limitation, we introduce a method that employs a distance sampling-based paraphraser leveraging ChatGPT, utilizing distance function to generate a controllable distribution of manipulated text data. For a set of sentences with the same context, the distance is used to calculate a degree of manipulation for any two sentences, and ChatGPT's few-shot prompting is performed using a text cluster with a similar distance defined by the Jaccard similarity. Therefore, ChatGPT, when applied to few-shot prompting with text clusters, can adjust the diversity of the manipulated text based on the distance. The proposed approach is shown to significantly enhance performance in audio-text retrieval, outperforming conventional text augmentation techniques.


Semi-supervised learning for continuous emotional intensity controllable speech synthesis with disentangled representations

arXiv.org Artificial Intelligence

Recent text-to-speech models have reached the level of generating natural speech similar to what humans say. But there still have limitations in terms of expressiveness. The existing emotional speech synthesis models have shown controllability using interpolated features with scaling parameters in emotional latent space. However, the emotional latent space generated from the existing models is difficult to control the continuous emotional intensity because of the entanglement of features like emotions, speakers, etc. In this paper, we propose a novel method to control the continuous intensity of emotions using semi-supervised learning. The model learns emotions of intermediate intensity using pseudo-labels generated from phoneme-level sequences of speech information. An embedding space built from the proposed model satisfies the uniform grid geometry with an emotional basis. The experimental results showed that the proposed method was superior in controllability and naturalness.


Exploring Train and Test-Time Augmentations for Audio-Language Learning

arXiv.org Artificial Intelligence

In this paper, we aim to unveil the impact of data augmentation in audio-language multi-modal learning, which has not been explored despite its importance. We explore various augmentation methods at not only train-time but also test-time and find out that proper data augmentation can lead to substantial improvements. Specifically, applying our proposed audio-language paired augmentation PairMix, which is the first multi-modal audio-language augmentation method, outperforms the baselines for both automated audio captioning and audio-text retrieval tasks. To fully take advantage of data augmentation, we also present multi-level test-time augmentation (Multi-TTA) for the test-time. We successfully incorporate the two proposed methods and uni-modal augmentations and achieve 47.5 SPIDEr on audio captioning, which is an 18.2% relative increase over the baseline. In audio-text retrieval, the proposed methods also show an improvement in performance as well.