Goto

Collaborating Authors

 Oh, Sewoong


Open Deep Search: Democratizing Search with Open-source Reasoning Agents

arXiv.org Artificial Intelligence

We introduce Open Deep Search (ODS) to close the increasing gap between the proprietary search AI solutions, such as Perplexity's Sonar Reasoning Pro and OpenAI's GPT-4o Search Preview, and their open-source counterparts. The main innovation introduced in ODS is to augment the reasoning capabilities of the latest open-source LLMs with reasoning agents that can judiciously use web search tools to answer queries. Concretely, ODS consists of two components that work with a base LLM chosen by the user: Open Search Tool and Open Reasoning Agent. Open Reasoning Agent interprets the given task and completes it by orchestrating a sequence of actions that includes calling tools, one of which is the Open Search Tool. Open Search Tool is a novel web search tool that outperforms proprietary counterparts. Together with powerful open-source reasoning LLMs, such as DeepSeek-R1, ODS nearly matches and sometimes surpasses the existing state-of-the-art baselines on two benchmarks: SimpleQA and FRAMES. For example, on the FRAMES evaluation benchmark, ODS improves the best existing baseline of the recently released GPT-4o Search Preview by 9.7% in accuracy. ODS is a general framework for seamlessly augmenting any LLMs -- for example, DeepSeek-R1 that achieves 82.4% on SimpleQA and 30.1% on FRAMES -- with search and reasoning capabilities to achieve state-of-the-art performance: 88.3% on SimpleQA and 75.3% on FRAMES.


SuperBPE: Space Travel for Language Models

arXiv.org Artificial Intelligence

The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall.


S4S: Solving for a Diffusion Model Solver

arXiv.org Artificial Intelligence

Diffusion models (DMs) create samples from a data distribution by starting from random noise and iteratively solving a reverse-time ordinary differential equation (ODE). Because each step in the iterative solution requires an expensive neural function evaluation (NFE), there has been significant interest in approximately solving these diffusion ODEs with only a few NFEs without modifying the underlying model. However, in the few NFE regime, we observe that tracking the true ODE evolution is fundamentally impossible using traditional ODE solvers. In this work, we propose a new method that learns a good solver for the DM, which we call Solving for the Solver (S4S). S4S directly optimizes a solver to obtain good generation quality by learning to match the output of a strong teacher solver. We evaluate S4S on six different pre-trained DMs, including pixel-space and latent-space DMs for both conditional and unconditional sampling. In all settings, S4S uniformly improves the sample quality relative to traditional ODE solvers. Moreover, our method is lightweight, data-free, and can be plugged in black-box on top of any discretization schedule or architecture to improve performance. Building on top of this, we also propose S4S-Alt, which optimizes both the solver and the discretization schedule. By exploiting the full design space of DM solvers, with 5 NFEs, we achieve an FID of 3.73 on CIFAR10 and 13.26 on MS-COCO, representing a $1.5\times$ improvement over previous training-free ODE methods.


Scalable Fingerprinting of Large Language Models

arXiv.org Artificial Intelligence

In typical use-cases, existing methods focus on Harmlessness and Persistence (Xu et al., 2024a; Russinovich & Model fingerprinting has emerged as a powerful Salem, 2024) of fingerprints. Fingerprinting is Harmless if tool for model owners to identify their shared the utility of the fingerprinted model does not degrade from model given API access. However, to lower false the base model, and it is Persistent if performing supervised discovery rate, fight fingerprint leakage, and defend fine-tuning (SFT) on the fingerprinted model with other data against coalitions of model users attempting does not make model forget the fingerprints (Jagielski et al., to bypass detection, we argue that scalability is 2023; Chen et al., 2024). While these properties are important, critical, i.e., scaling up the number of fingerprints we argue that there is another important criterion for one can embed into a model. Hence, we pose a good fingerprinting scheme not captured by prior work: scalability as a crucial requirement for fingerprinting Scalability. A fingerprinting scheme is scalable if many schemes. We experiment with fingerprint design fingerprints can be added without hurting the performance at a scale significantly larger than previously of the model.


Economics of Sourcing Human Data

arXiv.org Artificial Intelligence

Progress in AI has relied on human-generated data, from annotator marketplaces to the wider Internet. However, the widespread use of large language models now threatens the quality and integrity of human-generated data on these very platforms. We argue that this issue goes beyond the immediate challenge of filtering AI-generated content--it reveals deeper flaws in how data collection systems are designed. Existing systems often prioritize speed, scale, and efficiency at the cost of intrinsic human motivation, leading to declining engagement and data quality. We propose that rethinking data collection systems to align with contributors' intrinsic motivations--rather than relying solely on external incentives--can help sustain high-quality data sourcing at scale while maintaining contributor trust and long-term participation.


Training AI to be Loyal

arXiv.org Artificial Intelligence

Loyal AI is loyal to the community that builds it. An AI is loyal to a community if the community has ownership, alignment, and control. Community owned models can only be used with the approval of the community and share the economic rewards communally. Community aligned models have values that are aligned with the consensus of the community. Community controlled models perform functions designed by the community. Since we would like permissionless access to the loyal AI's community, we need the AI to be open source. The key scientific question then is: how can we build models that are openly accessible (open source) and yet are owned and governed by the community. This seeming impossibility is the focus of this paper where we outline a concrete pathway to Open, Monetizable and Loyal models (OML), building on our earlier work on OML, arXiv:2411.03887(1) , and a representation via a cryptographic-ML library http://github.com/sentient-agi/oml-1.0-fingerprinting .


OML: Open, Monetizable, and Loyal AI

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) has steadily improved across a wide range of tasks. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations that are racing to create Artificial General Intelligence (AGI). The centralized entities make decisions with little public oversight, shaping the future of humanity, often with unforeseen consequences. In this paper, we propose OML, which stands for Open, Monetizable, and Loyal AI, an approach designed to democratize AI development. OML is realized through an interdisciplinary framework spanning AI, blockchain, and cryptography. We present several ideas for constructing OML using technologies such as Trusted Execution Environments (TEE), traditional cryptographic primitives like fully homomorphic encryption and functional encryption, obfuscation, and AI-native solutions rooted in the sample complexity and intrinsic hardness of AI tasks. A key innovation of our work is introducing a new scientific field: AI-native cryptography. Unlike conventional cryptography, which focuses on discrete data and binary security guarantees, AI-native cryptography exploits the continuous nature of AI data representations and their low-dimensional manifolds, focusing on improving approximate performance. One core idea is to transform AI attack methods, such as data poisoning, into security tools. This novel approach serves as a foundation for OML 1.0 which uses model fingerprinting to protect the integrity and ownership of AI models. The spirit of OML is to establish a decentralized, open, and transparent platform for AI development, enabling the community to contribute, monetize, and take ownership of AI models. By decentralizing control and ensuring transparency through blockchain technology, OML prevents the concentration of power and provides accountability in AI development that has not been possible before.


Understanding the Gains from Repeated Self-Distillation

arXiv.org Machine Learning

Self-Distillation is a special type of knowledge distillation where the student model has the same architecture as the teacher model. Despite using the same architecture and the same training data, self-distillation has been empirically observed to improve performance, especially when applied repeatedly. For such a process, there is a fundamental question of interest: How much gain is possible by applying multiple steps of self-distillation? To investigate this relative gain, we propose studying the simple but canonical task of linear regression. Our analysis shows that the excess risk achieved by multi-step self-distillation can significantly improve upon a single step of self-distillation, reducing the excess risk by a factor as large as $d$, where $d$ is the input dimension. Empirical results on regression tasks from the UCI repository show a reduction in the learnt model's risk (MSE) by up to 47%.


PLeaS -- Merging Models with Permutations and Least Squares

arXiv.org Artificial Intelligence

The democratization of machine learning systems has made the process of fine-tuning accessible to a large number of practitioners, leading to a wide range of open-source models fine-tuned on specialized tasks and datasets. Recent work has proposed to merge such models to combine their functionalities. However, prior approaches are restricted to models that are fine-tuned from the same base model. Furthermore, the final merged model is typically restricted to be of the same size as the original models. In this work, we propose a new two-step algorithm to merge models-termed PLeaS-which relaxes these constraints. First, leveraging the Permutation symmetries inherent in the two models, PLeaS partially matches nodes in each layer by maximizing alignment. Next, PLeaS computes the weights of the merged model as a layer-wise Least Squares solution to minimize the approximation error between the features of the merged model and the permuted features of the original models. into a single model of a desired size, even when the two original models are fine-tuned from different base models. We also present a variant of our method which can merge models without using data from the fine-tuning domains. We demonstrate our method to merge ResNet models trained with shared and different label spaces, and show that we can perform better than the state-of-the-art merging methods by 8 to 15 percentage points for the same target compute while merging models trained on DomainNet and on fine-grained classification tasks.


Air Gap: Protecting Privacy-Conscious Conversational Agents

arXiv.org Artificial Intelligence

The growing use of large language model (LLM)-based conversational agents to manage sensitive user data raises significant privacy concerns. While these agents excel at understanding and acting on context, this capability can be exploited by malicious actors. We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand. Grounded in the framework of contextual integrity, we introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task. Extensive experiments using Gemini, GPT, and Mistral models as agents validate our approach's effectiveness in mitigating this form of context hijacking while maintaining core agent functionality. For example, we show that a single-query context hijacking attack on a Gemini Ultra agent reduces its ability to protect user data from 94% to 45%, while an AirGapAgent achieves 97% protection, rendering the same attack ineffective.