Goto

Collaborating Authors

 Oh, Seungeun


Uncertainty-Aware Hybrid Inference with On-Device Small and Remote Large Language Models

arXiv.org Artificial Intelligence

This paper studies a hybrid language model (HLM) architecture that integrates a small language model (SLM) operating on a mobile device with a large language model (LLM) hosted at the base station (BS) of a wireless network. The HLM token generation process follows the speculative inference principle: the SLM's vocabulary distribution is uploaded to the LLM, which either accepts or rejects it, with rejected tokens being resampled by the LLM. While this approach ensures alignment between the vocabulary distributions of the SLM and LLM, it suffers from low token throughput due to uplink transmission and the computation costs of running both language models. To address this, we propose a novel HLM structure coined Uncertainty-aware opportunistic HLM (U-HLM), wherein the SLM locally measures its output uncertainty and skips both uplink transmissions and LLM operations for tokens that are likely to be accepted. This opportunistic skipping is enabled by our empirical finding of a linear correlation between the SLM's uncertainty and the LLM's rejection probability. We analytically derive the uncertainty threshold and evaluate its expected risk of rejection. Simulations show that U-HLM reduces uplink transmissions and LLM computations by 45.93%, while achieving up to 97.54% of the LLM's inference accuracy and 2.54$\times$ faster token throughput than HLM without skipping.


SplitAMC: Split Learning for Robust Automatic Modulation Classification

arXiv.org Artificial Intelligence

Automatic modulation classification (AMC) is a technology that identifies a modulation scheme without prior signal information and plays a vital role in various applications, including cognitive radio and link adaptation. With the development of deep learning (DL), DL-based AMC methods have emerged, while most of them focus on reducing computational complexity in a centralized structure. This centralized learning-based AMC (CentAMC) violates data privacy in the aspect of direct transmission of client-side raw data. Federated learning-based AMC (FedeAMC) can bypass this issue by exchanging model parameters, but causes large resultant latency and client-side computational load. Moreover, both CentAMC and FedeAMC are vulnerable to large-scale noise occured in the wireless channel between the client and the server. To this end, we develop a novel AMC method based on a split learning (SL) framework, coined SplitAMC, that can achieve high accuracy even in poor channel conditions, while guaranteeing data privacy and low latency. In SplitAMC, each client can benefit from data privacy leakage by exchanging smashed data and its gradient instead of raw data, and has robustness to noise with the help of high scale of smashed data. Numerical evaluations validate that SplitAMC outperforms CentAMC and FedeAMC in terms of accuracy for all SNRs as well as latency.


Differentially Private CutMix for Split Learning with Vision Transformer

arXiv.org Artificial Intelligence

Recently, vision transformer (ViT) has started to outpace the conventional CNN in computer vision tasks. Considering privacy-preserving distributed learning with ViT, federated learning (FL) communicates models, which becomes ill-suited due to ViT' s large model size and computing costs. Split learning (SL) detours this by communicating smashed data at a cut-layer, yet suffers from data privacy leakage and large communication costs caused by high similarity between ViT' s smashed data and input data. Motivated by this problem, we propose DP-CutMixSL, a differentially private (DP) SL framework by developing DP patch-level randomized CutMix (DP-CutMix), a novel privacy-preserving inter-client interpolation scheme that replaces randomly selected patches in smashed data. By experiment, we show that DP-CutMixSL not only boosts privacy guarantees and communication efficiency, but also achieves higher accuracy than its Vanilla SL counterpart. Theoretically, we analyze that DP-CutMix amplifies R\'enyi DP (RDP), which is upper-bounded by its Vanilla Mixup counterpart.


Mix2FLD: Downlink Federated Learning After Uplink Federated Distillation With Two-Way Mixup

arXiv.org Machine Learning

Abstract--This letter proposes a novel communication-efficient and privacy-preserving distributed machine learning framework, coined Mix2FLD. To address uplink-downlink capacity asymmetry, local model outputs are uploaded to a server in the uplink as in federated distillation (FD), whereas global model parameters are downloaded in the downlink as in federated learning (FL). This requires a model output-to-parameter conversion at the server, after collecting additional data samples from devices. Index Terms--Distributed machine learning, on-device learning, federated learning, federated distillation, uplink-downlink asymmetry. Federated learning (FL) is a compelling depicted in Figure 1, Mix2FLD is built upon two key algorithms: solution that collectively trains on-device ML models using federated learning after distillation (FLD) [8] and Mixup their local private data [2], [3].


Multi-hop Federated Private Data Augmentation with Sample Compression

arXiv.org Machine Learning

On-device machine learning (ML) has brought about the accessibility to a tremendous amount of data from the users while keeping their local data private instead of storing it in a central entity. However, for privacy guarantee, it is inevitable at each device to compensate for the quality of data or learning performance, especially when it has a non-IID training dataset. In this paper, we propose a data augmentation framework using a generative model: multi-hop federated augmentation with sample compression (MultFAug). A multi-hop protocol speeds up the end-to-end over-the-air transmission of seed samples by enhancing the transport capacity. The relaying devices guarantee stronger privacy preservation as well since the origin of each seed sample is hidden in those participants. For further privatization on the individual sample level, the devices compress their data samples. The devices sparsify their data samples prior to transmissions to reduce the sample size, which impacts the communication payload. This preprocessing also strengthens the privacy of each sample, which corresponds to the input perturbation for preserving sample privacy. The numerical evaluations show that the proposed framework significantly improves privacy guarantee, transmission delay, and local training performance with adjustment to the number of hops and compression rate.


Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data

arXiv.org Machine Learning

On-device machine learning (ML) enables the training process to exploit a massive amount of user-generated private data samples. To enjoy this benefit, inter-device communication overhead should be minimized. With this end, we propose federated distillation (FD), a distributed model training algorithm whose communication payload size is much smaller than a benchmark scheme, federated learning (FL), particularly when the model size is large. Moreover, user-generated data samples are likely to become non-IID across devices, which commonly degrades the performance compared to the case with an IID dataset. To cope with this, we propose federated augmentation (FAug), where each device collectively trains a generative model, and thereby augments its local data towards yielding an IID dataset. Empirical studies demonstrate that FD with FAug yields around 26x less communication overhead while achieving 95-98% test accuracy compared to FL.