Goto

Collaborating Authors

 Oh, Jinoh


Image is All You Need: Towards Efficient and Effective Large Language Model-Based Recommender Systems

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have recently emerged as a powerful backbone for recommender systems. Existing LLM-based recommender systems take two different approaches for representing items in natural language, i.e., Attribute-based Representation and Description-based Representation. In this work, we aim to address the trade-off between efficiency and effectiveness that these two approaches encounter, when representing items consumed by users. Based on our interesting observation that there is a significant information overlap between images and descriptions associated with items, we propose a novel method, Image is all you need for LLM-based Recommender system (I-LLMRec). Our main idea is to leverage images as an alternative to lengthy textual descriptions for representing items, aiming at reducing token usage while preserving the rich semantic information of item descriptions. Through extensive experiments, we demonstrate that I-LLMRec outperforms existing methods in both efficiency and effectiveness by leveraging images. Moreover, a further appeal of I-LLMRec is its ability to reduce sensitivity to noise in descriptions, leading to more robust recommendations.


Learning Personalized Representations using Graph Convolutional Network

arXiv.org Artificial Intelligence

Generating representations that precisely reflect customers' behavior is an important task for providing personalized skill routing experience in Alexa. Currently, Dynamic Routing (DR) team, which is responsible for routing Alexa traffic to providers or skills, relies on two features to be served as personal signals: absolute traffic count and normalized traffic count of every skill usage per customer. Neither of them considers the network based structure for interactions between customers and skills, which contain richer information for customer preferences. In this work, we first build a heterogeneous edge attributed graph based customers' past interactions with the invoked skills, in which the user requests (utterances) are modeled as edges. Then we propose a graph convolutional network(GCN) based model, namely Personalized Dynamic Routing Feature Encoder(PDRFE), that generates personalized customer representations learned from the built graph. Compared with existing models, PDRFE is able to further capture contextual information in the graph convolutional function. The performance of our proposed model is evaluated by a downstream task, defect prediction, that predicts the defect label from the learned embeddings of customers and their triggered skills. We observe up to 41% improvements on the cross entropy metric for our proposed models compared to the baselines.