Goto

Collaborating Authors

 Ogidi, Franklin


Advancing Medical Representation Learning Through High-Quality Data

arXiv.org Artificial Intelligence

Despite the growing scale of medical Vision-Language datasets, the impact of dataset quality on model performance remains under-explored. We introduce Open-PMC, a high-quality medical dataset from PubMed Central, containing 2.2 million image-text pairs, enriched with image modality annotations, subfigures, and summarized in-text references. Notably, the in-text references provide richer medical context, extending beyond the abstract information typically found in captions. Through extensive experiments, we benchmark Open-PMC against larger datasets across retrieval and zero-shot classification tasks. Our results show that dataset quality-not just size-drives significant performance gains. We complement our benchmark with an in-depth analysis of feature representation. Our findings highlight the crucial role of data curation quality in advancing multimodal medical AI. We release Open-PMC, along with the trained models and our codebase.


ViLBias: A Comprehensive Framework for Bias Detection through Linguistic and Visual Cues , presenting Annotation Strategies, Evaluation, and Key Challenges

arXiv.org Artificial Intelligence

The integration of Large Language Models (LLMs) and Vision-Language Models (VLMs) opens new avenues for addressing complex challenges in multimodal content analysis, particularly in biased news detection. This study introduces VLBias, a framework that leverages state-of-the-art LLMs and VLMs to detect linguistic and visual biases in news content. We present a multimodal dataset comprising textual content and corresponding images from diverse news sources. We propose a hybrid annotation framework that combines LLM-based annotations with human review to ensure high-quality labeling while reducing costs and enhancing scalability. Our evaluation compares the performance of state-of-the-art SLMs and LLMs for both modalities (text and images) and the results reveal that while SLMs are computationally efficient, LLMs demonstrate superior accuracy in identifying subtle framing and text-visual inconsistencies. Furthermore, empirical analysis shows that incorporating visual cues alongside textual data improves bias detection accuracy by 3 to 5%. This study provides a comprehensive exploration of LLMs, SLMs, and VLMs as tools for detecting multimodal biases in news content and highlights their respective strengths, limitations, and potential for future applications


Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning

arXiv.org Artificial Intelligence

We perform a comprehensive benchmarking of contrastive frameworks for learning multimodal representations in the medical domain. Through this study, we aim to answer the following research questions: (i) How transferable are general-domain representations to the medical domain? (ii) Is multimodal contrastive training sufficient, or does it benefit from unimodal training as well? (iii) What is the impact of feature granularity on the effectiveness of multimodal medical representation learning? To answer these questions, we investigate eight contrastive learning approaches under identical training setups, and train them on 2.8 million image-text pairs from four datasets, and evaluate them on 25 downstream tasks, including classification (zero-shot and linear probing), image-to-text and text-to-image retrieval, and visual question-answering. Our findings suggest a positive answer to the first question, a negative answer to the second question, and the benefit of learning fine-grained features. Finally, we make our code publicly available.