Obuchi, Tomoyuki
Objective and efficient inference for couplings in neuronal networks
Terada, Yu, Obuchi, Tomoyuki, Isomura, Takuya, Kabashima, Yoshiyuki
Inferring directional couplings from the spike data of networks is desired in various scientific fields such as neuroscience. Here, we apply a recently proposed objective procedure to the spike data obtained from the Hodgkin-Huxley type models and in vitro neuronal networks cultured in a circular structure. As a result, we succeed in reconstructing synaptic connections accurately from the evoked activity as well as the spontaneous one. To obtain the results, we invent an analytic formula approximately implementing a method of screening relevant couplings. This significantly reduces the computational cost of the screening method employed in the proposed objective procedure, making it possible to treat large-size systems as in this study.
Objective and efficient inference for couplings in neuronal networks
Terada, Yu, Obuchi, Tomoyuki, Isomura, Takuya, Kabashima, Yoshiyuki
Inferring directional couplings from the spike data of networks is desired in various scientific fields such as neuroscience. Here, we apply a recently proposed objective procedure to the spike data obtained from the Hodgkin-Huxley type models and in vitro neuronal networks cultured in a circular structure. As a result, we succeed in reconstructing synaptic connections accurately from the evoked activity as well as the spontaneous one. To obtain the results, we invent an analytic formula approximately implementing a method of screening relevant couplings. This significantly reduces the computational cost of the screening method employed in the proposed objective procedure, making it possible to treat large-size systems as in this study.
Mean-field theory of graph neural networks in graph partitioning
Kawamoto, Tatsuro, Tsubaki, Masashi, Obuchi, Tomoyuki
A theoretical performance analysis of the graph neural network (GNN) is presented. For classification tasks, the neural network approach has the advantage in terms of flexibility that it can be employed in a data-driven manner, whereas Bayesian inference requires the assumption of a specific model. A fundamental question is then whether GNN has a high accuracy in addition to this flexibility. Moreover, whether the achieved performance is predominately a result of the backpropagation or the architecture itself is a matter of considerable interest. To gain a better insight into these questions, a mean-field theory of a minimal GNN architecture is developed for the graph partitioning problem. This demonstrates a good agreement with numerical experiments.
Mean-field theory of graph neural networks in graph partitioning
Kawamoto, Tatsuro, Tsubaki, Masashi, Obuchi, Tomoyuki
A theoretical performance analysis of the graph neural network (GNN) is presented. For classification tasks, the neural network approach has the advantage in terms of flexibility that it can be employed in a data-driven manner, whereas Bayesian inference requires the assumption of a specific model. A fundamental question is then whether GNN has a high accuracy in addition to this flexibility. Moreover, whether the achieved performance is predominately a result of the backpropagation or the architecture itself is a matter of considerable interest. To gain a better insight into these questions, a mean-field theory of a minimal GNN architecture is developed for the graph partitioning problem. This demonstrates a good agreement with numerical experiments.
Statistical mechanical analysis of sparse linear regression as a variable selection problem
Obuchi, Tomoyuki, Nakanishi-Ohno, Yoshinori, Okada, Masato, Kabashima, Yoshiyuki
An algorithmic limit of compressed sensing or related variable-selection problems is analytically evaluated when a design matrix is given by an overcomplete random matrix. The replica method from statistical mechanics is employed to derive the result. The analysis is conducted through evaluation of the entropy, an exponential rate of the number of combinations of variables giving a specific value of fit error to given data which is assumed to be generated from a linear process using the design matrix. This yields the typical achievable limit of the fit error when solving a representative $\ell_0$ problem and includes the presence of unfavourable phase transitions preventing local search algorithms from reaching the minimum-error configuration. The associated phase diagrams are presented. A noteworthy outcome of the phase diagrams is, however, that there exists a wide parameter region where any phase transition is absent from the high temperature to the lowest temperature at which the minimum-error configuration or the ground state is reached. This implies that certain local search algorithms can find the ground state with moderate computational costs in that region. The theoretical evaluation of the entropy is confirmed by extensive numerical methods using the exchange Monte Carlo and the multi-histogram methods. Another numerical test based on a metaheuristic optimisation algorithm called simulated annealing is conducted, which well supports the theoretical predictions on the local search algorithms and we can find the ground state with high probability in polynomial time with respect to system size.
Semi-Analytic Resampling in Lasso
Obuchi, Tomoyuki, Kabashima, Yoshiyuki
An approximate method for conducting resampling in Lasso, the $\ell_1$ penalized linear regression, in a semi-analytic manner is developed, whereby the average over the resampled datasets is directly computed without repeated numerical sampling, thus enabling an inference free of the statistical fluctuations due to sampling finiteness, as well as a significant reduction of computational time. The proposed method is employed to implement bootstrapped Lasso (Bolasso) and stability selection, both of which are variable selection methods using resampling in conjunction with Lasso, and it resolves their disadvantage regarding computational cost. To examine approximation accuracy and efficiency, numerical experiments were carried out using simulated datasets. Moreover, an application to a real-world dataset, the wine quality dataset, is presented. To process such real-world datasets, an objective criterion for determining the relevance of selected variables is also introduced by the addition of noise variables and resampling.
Accelerating Cross-Validation in Multinomial Logistic Regression with $\ell_1$-Regularization
Obuchi, Tomoyuki, Kabashima, Yoshiyuki
We develop an approximate formula for evaluating a cross-validation estimator of predictive likelihood for multinomial logistic regression regularized by an $\ell_1$-norm. This allows us to avoid repeated optimizations required for literally conducting cross-validation; hence, the computational time can be significantly reduced. The formula is derived through a perturbative approach employing the largeness of the data size and the model dimensionality. Its usefulness is demonstrated on simulated data and the ISOLET dataset from the UCI machine learning repository.
Approximate cross-validation formula for Bayesian linear regression
Kabashima, Yoshiyuki, Obuchi, Tomoyuki, Uemura, Makoto
Cross-validation (CV) is a technique for evaluating the ability of statistical models/learning systems based on a given data set. Despite its wide applicability, the rather heavy computational cost can prevent its use as the system size grows. To resolve this difficulty in the case of Bayesian linear regression, we develop a formula for evaluating the leave-one-out CV error approximately without actually performing CV. The usefulness of the developed formula is tested by statistical mechanical analysis for a synthetic model. This is confirmed by application to a real-world supernova data set as well.
Boltzmann-Machine Learning of Prior Distributions of Binarized Natural Images
Obuchi, Tomoyuki, Koma, Hirokazu, Yasuda, Muneki
Prior distributions of binarized natural images are learned by using a Boltzmann machine. According the results of this study, there emerges a structure with two sublattices in the interactions, and the nearest-neighbor and next-nearest-neighbor interactions correspondingly take two discriminative values, which reflects the individual characteristics of the three sets of pictures that we process. Meanwhile, in a longer spatial scale, a longer-range, although still rapidly decaying, ferromagnetic interaction commonly appears in all cases. The characteristic length scale of the interactions is universally up to approximately four lattice spacings $\xi \approx 4$. These results are derived by using the mean-field method, which effectively reduces the computational time required in a Boltzmann machine. An improved mean-field method called the Bethe approximation also gives the same results, as well as the Monte Carlo method does for small size images. These reinforce the validity of our analysis and findings. Relations to criticality, frustration, and simple-cell receptive fields are also discussed.