Goto

Collaborating Authors

 Obst, Oliver


Data Optimisation of Machine Learning Models for Smart Irrigation in Urban Parks

arXiv.org Artificial Intelligence

Urban environments face significant challenges due to climate change, including extreme heat, drought, and water scarcity, which impact public health, community well-being, and local economies. Effective management of these issues is crucial, particularly in areas like Sydney Olympic Park, which relies on one of Australia's largest irrigation systems. The Smart Irrigation Management for Parks and Cool Towns (SIMPaCT) project, initiated in 2021, leverages advanced technologies and machine learning models to optimize irrigation and induce physical cooling. This paper introduces two novel methods to enhance the efficiency of the SIMPaCT system's extensive sensor network and applied machine learning models. The first method employs clustering of sensor time series data using K-shape and K-means algorithms to estimate readings from missing sensors, ensuring continuous and reliable data. This approach can detect anomalies, correct data sources, and identify and remove redundant sensors to reduce maintenance costs. The second method involves sequential data collection from different sensor locations using robotic systems, significantly reducing the need for high numbers of stationary sensors. Together, these methods aim to maintain accurate soil moisture predictions while optimizing sensor deployment and reducing maintenance costs, thereby enhancing the efficiency and effectiveness of the smart irrigation system. Our evaluations demonstrate significant improvements in the efficiency and cost-effectiveness of soil moisture monitoring networks. The cluster-based replacement of missing sensors provides up to 5.4% decrease in average error. The sequential sensor data collection as a robotic emulation shows 17.2% and 2.1% decrease in average error for circular and linear paths respectively.


A Unified Manifold Similarity Measure Enhancing Few-Shot, Transfer, and Reinforcement Learning in Manifold-Distributed Datasets

arXiv.org Artificial Intelligence

Training a classifier with high mean accuracy from a manifold-distributed dataset can be challenging. This problem is compounded further when there are only few labels available for training. For transfer learning to work, both the source and target datasets must have a similar manifold structure. As part of this study, we present a novel method for determining the similarity between two manifold structures. This method can be used to determine whether the target and source datasets have a similar manifold structure suitable for transfer learning. We then present a few-shot learning method to classify manifold-distributed datasets with limited labels using transfer learning. Based on the base and target datasets, a similarity comparison is made to determine if the two datasets are suitable for transfer learning. A manifold structure and label distribution are learned from the base and target datasets. When the structures are similar, the manifold structure and its relevant label information from the richly labeled source dataset is transferred to target dataset. We use the transferred information, together with the labels and unlabeled data from the target dataset, to develop a few-shot classifier that produces high mean classification accuracy on manifold-distributed datasets. In the final part of this article, we discuss the application of our manifold structure similarity measure to reinforcement learning and image recognition.


TurtleRabbit 2024 SSL Team Description Paper

arXiv.org Artificial Intelligence

TurtleRabbit is a new RoboCup SSL team from Western Sydney University. This team description paper presents our approach in navigating some of the challenges in developing a new SSL team from scratch. SSL is dominated by teams with extensive experience and customised equipment that has been developed over many years. Here, we outline our approach in overcoming some of the complexities associated with replicating advanced open-sourced designs and managing the high costs of custom components. Opting for simplicity and cost-effectiveness, our strategy primarily employs off-the-shelf electronics components and ``hobby'' brushless direct current (BLDC) motors, complemented by 3D printing and CNC milling. This approach helped us to streamline the development process and, with our open-sourced hardware design, hopefully will also lower the bar for other teams to enter RoboCup SSL in the future. The paper details the specific hardware choices, their approximate costs, the integration of electronics and mechanics, and the initial steps taken in software development, for our entry into SSL that aims to be simple yet competitive.


The Power of Linear Recurrent Neural Networks

arXiv.org Artificial Intelligence

Recurrent neural networks are a powerful means to cope with time series. We show how autoregressive linear, i.e., linearly activated recurrent neural networks (LRNNs) can approximate any time-dependent function f(t) given by a number of function values. The approximation can effectively be learned by simply solving a linear equation system; no backpropagation or similar methods are needed. Furthermore, and this is probably the main contribution of this article, the size of an LRNN can be reduced significantly in one step after inspecting the spectrum of the network transition matrix, i.e., its eigenvalues, by taking only the most relevant components. Therefore, in contrast to other approaches, we do not only learn network weights but also the network architecture. LRNNs have interesting properties: They end up in ellipse trajectories in the long run and allow the prediction of further values and compact representations of functions. We demonstrate this by several experiments, among them multiple superimposed oscillators (MSO), robotic soccer, and predicting stock prices. LRNNs outperform the previous state-of-the-art for the MSO task with a minimal number of units.


Information Maximizing Exploration with a Latent Dynamics Model

arXiv.org Machine Learning

All reinforcement learning algorithms must handle the trade-off between exploration and exploitation. Many state-of-the-art deep reinforcement learning methods use noise in the action selection, such as Gaussian noise in policy gradient methods or $\epsilon$-greedy in Q-learning. While these methods are appealing due to their simplicity, they do not explore the state space in a methodical manner. We present an approach that uses a model to derive reward bonuses as a means of intrinsic motivation to improve model-free reinforcement learning. A key insight of our approach is that this dynamics model can be learned in the latent feature space of a value function, representing the dynamics of the agent and the environment. This method is both theoretically grounded and computationally advantageous, permitting the efficient use of Bayesian information-theoretic methods in high-dimensional state spaces. We evaluate our method on several continuous control tasks, focusing on improving exploration.


RoboCupSimData: A RoboCup soccer research dataset

arXiv.org Artificial Intelligence

In RoboCup, several To assist automated learning of team behavior, we provide a large dataset generated using 10different leagues exist to emphasize specific research problems by using different kinds of the top participants in RoboCup 2016 or 2017. of robots and rules. There are different soccer While it is possible to use the simulator for robot leagues in the RoboCup with different types and learning, we also generate additional data that is sizes of hardware and software: small size, middle not normally available from playing other teams size, standard platform league, humanoid, 2D directly: We modified the simulator to record and 3D simulation (Kitano et al., 1997). In the data from each robots local perspective, that is, soccer simulation leagues (Akiyama et al., 2015), with the restricted views that depend on each the emphasis is on multi-robot team work with robots situation and actions, and also include partial and noisy information, in real-time.


Simulation leagues: Analysis of competition formats

arXiv.org Artificial Intelligence

The selection of an appropriate competition format is critical for both the success and credibility of any competition, both real and simulated. In this paper, the automated parallelism offered by the RoboCupSoccer 2D simulation league is leveraged to conduct a 28,000 game round-robin between the top 8 teams from RoboCup 2012 and 2013. A proposed new competition format is found to reduce variation from the resultant statistically significant team performance rankings by 75% and 67%, when compared to the actual competition results from RoboCup 2012 and 2013 respectively. These results are statistically validated by generating 10,000 random tournaments for each of the three considered formats and comparing the respective distributions of ranking discrepancy.


Guided Self-Organization of Input-Driven Recurrent Neural Networks

arXiv.org Artificial Intelligence

We review attempts that have been made towards understanding the computational properties and mechanisms of input-driven dynamical systems like RNNs, and reservoir computing networks in particular. We provide details on methods that have been developed to give quantitative answers to the questions above. Following this, we show how self-organization may be used to improve reservoirs for better performance, in some cases guided by the measures presented before. We also present a possible way to quantify task performance using an information-theoretic approach, and finally discuss promising future directions aimed at a better understanding of how these systems perform their computations and how to best guide self-organized processes for their optimization.


Gliders2012: Development and Competition Results

arXiv.org Artificial Intelligence

The RoboCup 2D Simulation League incorporates several challenging features, setting a benchmark for Artificial Intelligence (AI). In this paper we describe some of the ideas and tools around the development of our team, Gliders2012. In our description, we focus on the evaluation function as one of our central mechanisms for action selection. We also point to a new framework for watching log files in a web browser that we release for use and further development by the RoboCup community. Finally, we also summarize results of the group and final matches we played during RoboCup 2012, with Gliders2012 finishing 4th out of 19 teams.


RoboCup 2004 Competitions and Symposium: A Small Kick for Robots, a Giant Score for Science

AI Magazine

RoboCup is an international initiative with the main goals of fostering research and education in artificial intelligence and robotics, as well as of promoting science and technology to world citizens. The idea behind RoboCup is to provide a standard problem for which a wide range of technologies can be integrated and examined, as well as being used for project-oriented education, and to organize annual events open to the general public, at which different solutions to the problem are compared. The eighth annual RoboCup -- RoboCup 2004 -- was held in Lisbon, Portugal, from 27 June to 5 July. In this article, a general description of RoboCup 2004 is presented, including summaries concerning teams, participants, distribution into leagues, main research advances, as well as detailed descriptions for each league.