Goto

Collaborating Authors

 Obozinski, Guillaume R.


Tight convex relaxations for sparse matrix factorization

Neural Information Processing Systems

Based on a new atomic norm, we propose a new convex formulation for sparse matrix factorization problems in which the number of nonzero elements of the factors is assumed fixed and known. The formulation counts sparse PCA with multiple factors, subspace clustering and low-rank sparse bilinear regression as potential applications. We compute slow rates and an upper bound on the statistical dimension of the suggested norm for rank 1 matrices, showing that its statistical dimension is an order of magnitude smaller than the usual l_1-norm, trace norm and their combinations. Even though our convex formulation is in theory hard and does not lead to provably polynomial time algorithmic schemes, we propose an active set algorithm leveraging the structure of the convex problem to solve it and show promising numerical results.


A latent factor model for highly multi-relational data

Neural Information Processing Systems

Many data such as social networks, movie preferences or knowledge bases are multi-relational, in that they describe multiple relationships between entities. While there is a large body of work focused on modeling these data, few considered modeling these multiple types of relationships jointly. Further, existing approaches tend to breakdown when the number of these types grows. In this paper, we propose a method for modeling large multi-relational datasets, with possibly thousands of relations. Our model is based on a bilinear structure, which captures the various orders of interaction of the data, but also shares sparse latent factors across different relations. We illustrate the performance of our approach on standard tensor-factorization datasets where we attain, or outperform, state-of-the-art results. Finally, a NLP application demonstrates our scalability and the ability of our model to learn efficient, and semantically meaningful verb representations.


Trace Lasso: a trace norm regularization for correlated designs

Neural Information Processing Systems

Using the $\ell_1$-norm to regularize the estimation of the parameter vector of a linear model leads to an unstable estimator when covariates are highly correlated. In this paper, we introduce a new penalty function which takes into account the correlation of the design matrix to stabilize the estimation. This norm, called the trace Lasso, uses the trace norm of the selected covariates, which is a convex surrogate of their rank, as the criterion of model complexity. We analyze the properties of our norm, describe an optimization algorithm based on reweighted least-squares, and illustrate the behavior of this norm on synthetic data, showing that it is more adapted to strong correlations than competing methods such as the elastic net.


Network Flow Algorithms for Structured Sparsity

Neural Information Processing Systems

We consider a class of learning problems that involve a structured sparsity-inducing norm defined as the sum of $\ell_\infty$-norms over groups of variables. Whereas a lot of effort has been put in developing fast optimization methods when the groups are disjoint or embedded in a specific hierarchical structure, we address here the case of general overlapping groups. To this end, we show that the corresponding optimization problem is related to network flow optimization. More precisely, the proximal problem associated with the norm we consider is dual to a quadratic min-cost flow problem. We propose an efficient procedure which computes its solution exactly in polynomial time. Our algorithm scales up to millions of groups and variables, and opens up a whole new range of applications for structured sparse models. We present several experiments on image and video data, demonstrating the applicability and scalability of our approach for various problems.