Oates, Tim
Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks
Wang, Zhiguang (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County)
Inspired by recent successes of deep learning in computer vision and speech recognition, we propose a novel framework to encode time series data as different types of images, namely, Gramian Angular Fields (GAF) and Markov Transition Fields (MTF). This enables the use of techniques from computer vision for classification. Using a polar coordinate system, GAF images are represented as a Gramian matrix where each element is the trigonometric sum (i.e., superposition of directions) between different time intervals. MTF images represent the first order Markov transition probability along one dimension and temporal dependency along the other. We used Tiled Convolutional Neural Networks (tiled CNNs) on 12 standard datasets to learn high-level features from individual GAF, MTF, and GAF-MTF images that resulted from combining GAF and MTF representations into a single image. The classification results of our approach are competitive with five stateof-the-art approaches. An analysis of the features and weights learned via tiled CNNs explains why the approach works.
Comparing Raw Data and Feature Extraction for Seizure Detection with Deep Learning Methods
Page, Adam (University of Maryland, Baltimore County) | Turner, J. T. (University of Maryland, Baltimore County) | Mohsenin, Tinoosh (University of Maryland, Baltimore County) | Oates, Tim (University of Maryland, Baltimore County)
Personalized health monitoring is slowly becoming a reality due to advances in small, high-fidelity sensors, low-power processors, as well as energy harvesting techniques. The ability to efficiently and effectively process this data and extract useful information is of the utmost importance. In this paper, we aim at dealing with this challenge for the application of automated seizure detection. We explore the use of a variety of representations and machine learning algorithms to the particular task of seizure detection in high-resolution, multi-channel EEG data. In doing so, we explore the classification accuracy, computational complexity and memory requirements with a view toward understanding which approaches are most suitable. In particular, we show that layered learning approaches such as Deep Belief Networks excel along these dimensions.
The Thing That We Tried Didn't Work Very Well : Deictic Representation in Reinforcement Learning
Finney, Sarah, Gardiol, Natalia, Kaelbling, Leslie Pack, Oates, Tim
Most reinforcement learning methods operate on propositional representations of the world state. Such representations are often intractably large and generalize poorly. Using a deictic representation is believed to be a viable alternative: they promise generalization while allowing the use of existing reinforcement-learning methods. Yet, there are few experiments on learning with deictic representations reported in the literature. In this paper we explore the effectiveness of two forms of deictic representation and a na\"{i}ve propositional representation in a simple blocks-world domain. We find, empirically, that the deictic representations actually worsen learning performance. We conclude with a discussion of possible causes of these results and strategies for more effective learning in domains with objects.
Toward an Integrated Metacognitive Architecture
Cox, Michael T. (University of Maryland) | Oates, Tim (University of Maryland Baltimore County) | Perlis, Don (University of Maryland )
Researchers have studied problems in metacognition both in computers and in humans. In response some have implemented models of cognition and metacognitive activity in various architectures to test and better define specific theories of metacognition. However, current theories and implementations suffer from numerous problems and lack of detail. Here we illustrate the problems with two different computational approaches. The Meta-Cognitive Loop and Meta-AQUA both examine the metacognitive reasoning involved in monitoring and reasoning about failures of expectations, and they both learn from such experiences. But neither system presents a full accounting of the variety of known metacognitive phenomena, and, as far as we know, no extant system does. The problem is that no existing cognitive architecture directly addresses metacognition. Instead, current architectures were initially developed to study more narrow cognitive functions and only later were they modified to include higher level attributes. We claim that the solution is to develop a metacognitive architecture outright, and we begin to outline the structure that such a foundation might have.
Model AI Assignments 2011
Neller, Todd William (Gettysburg College) | desJardins, Marie (University of Maryland, Baltimore County) | Oates, Tim (University of Maryland, Baltimore County) | Taylor, Matthew E. (Lafayette College)
Cluedo) serves as a fun when it comes to designing an optimal (or even practicable) focus problem for this introduction to propositional knowledge solution. The potential solutions also touch on many representation and reasoning. After covering fundamentals areas of AI, so the students can be creative in applying and of propositional logic, students first solve basic synthesizing what they've learned to a new problem. The logic problems with and without the aid of a satisfiability three challenges give the students the opportunity to choose solver (e.g.
The Metacognitive Loop: An Architecture for Building Robust Intelligent Systems
Shahri, Hamid Haidarian (University of Maryland) | Dinalankara, Wikum (University of Maryland) | Fults, Scott (University of Maryland) | Wilson, Shomir (University of Maryland) | Perlis, Donald (University of Maryland) | Schmill, Matt (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Josyula, Darsana (Bowie State University) | Anderson, Michael (Franklin and Marshall College)
What commonsense knowledge do intelligent systems need, in order to recover from failures or deal with unexpected situations? It is impractical to represent predetermined solutions to deal with every unanticipated situation or provide predetermined fixes for all the different ways in which systems may fail. We contend that intelligent systems require only a finite set of anomaly-handling strategies to muddle through anomalous situations. We describe a generalized metacognition module that implements such a set of anomaly-handling strategies and that in principle can be attached to any host system to improve the robustness of that system. Several implemented studies are reported, that support our contention.
Reports of the AAAI 2009 Spring Symposia
Bao, Jie (Rensselaer Polytechnic Institute) | Bojars, Uldis (National University of Ireland) | Choudhury, Ranzeem (Dartmouth College) | Ding, Li (Rensselaer Polytechnic Institute) | Greaves, Mark (Vulcan Inc.) | Kapoor, Ashish (Microsoft Research) | Louchart, Sandy (Heriot-Watt University) | Mehta, Manish (Georgia Institute of Technology) | Nebel, Bernhard (Albert-Ludwigs University Freiburg) | Nirenburg, Sergei (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Roberts, David L. (Georgia Institute of Technology) | Sanfilippo, Antonio (Pacific Northwest National Laboratory) | Stojanovic, Nenad (University of Karlsruhe) | Stubbs, Kristen (iRobot Corportion) | Thomaz, Andrea L. (Georgia Institute of Technology) | Tsui, Katherine (University of Massachusetts Lowell) | Woelfl, Stefan (Albert-Ludwigs University Freiburg)
The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain.
Reports of the AAAI 2009 Spring Symposia
Bao, Jie (Rensselaer Polytechnic Institute) | Bojars, Uldis (National University of Ireland) | Choudhury, Ranzeem (Dartmouth College) | Ding, Li (Rensselaer Polytechnic Institute) | Greaves, Mark (Vulcan Inc.) | Kapoor, Ashish (Microsoft Research) | Louchart, Sandy (Heriot-Watt University) | Mehta, Manish (Georgia Institute of Technology) | Nebel, Bernhard (Albert-Ludwigs University Freiburg) | Nirenburg, Sergei (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Roberts, David L. (Georgia Institute of Technology) | Sanfilippo, Antonio (Pacific Northwest National Laboratory) | Stojanovic, Nenad (University of Karlsruhe) | Stubbs, Kristen (iRobot Corportion) | Thomaz, Andrea L. (Georgia Institute of Technology) | Tsui, Katherine (University of Massachusetts Lowell) | Woelfl, Stefan (Albert-Ludwigs University Freiburg)
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, was pleased to present the 2009 Spring Symposium Series, held Monday through Wednesday, March 23–25, 2009 at Stanford University. The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The goal of the Agents that Learn from Human Teachers was to investigate how we can enable software and robotics agents to learn from real-time interaction with an everyday human partner. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Experimental Design symposium discussed the challenges of evaluating AI systems. The Human Behavior Modeling symposium explored reasoning methods for understanding various aspects of human behavior, especially in the context of designing intelligent systems that interact with humans. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain. The Learning by Reading and Learning to Read symposium explored two aspects of making natural language texts semantically accessible to, and processable by, machines. The Social Semantic Web symposium focused on the real-world grand challenges in this area. Finally, the Technosocial Predictive Analytics symposium explored new methods for anticipatory analytical thinking that provide decision advantage through the integration of human and physical models.
A Self-Help Guide For Autonomous Systems
Anderson, Michael L. (Franklin &) | Fults, Scott (Marshall College) | Josyula, Darsana P. (University of Maryland) | Oates, Tim (Bowie State University) | Perlis, Don (University of Maryland Baltimore County) | Wilson, Shomir (University of Maryland) | Wright, Dean (University of Maryland)
When things go badly, we notice that something is amiss, figure out what went wrong and why, and attempt to repair the problem. Artificial systems depend on their human designers to program in responses to every eventuality and therefore typically don't even notice when things go wrong, following their programming over the proverbial, and in some cases literal, cliff. This article describes our past and current work on the Meta-Cognitive Loop, a domain-general approach to giving artificial systems the ability to notice, assess, and repair problems. The goal is to make artificial systems more robust and less dependent on their human designers.
A Self-Help Guide For Autonomous Systems
Anderson, Michael L. (Franklin &) | Fults, Scott (Marshall College) | Josyula, Darsana P. (University of Maryland) | Oates, Tim (Bowie State University) | Perlis, Don (University of Maryland Baltimore County) | Wilson, Shomir (University of Maryland) | Wright, Dean (University of Maryland)
Humans learn from their mistakes. When things go badly, we notice that something is amiss, figure out what went wrong and why, and attempt to repair the problem. Artificial systems depend on their human designers to program in responses to every eventuality and therefore typically don’t even notice when things go wrong, following their programming over the proverbial, and in some cases literal, cliff. This article describes our past and current work on the Meta-Cognitive Loop, a domain-general approach to giving artificial systems the ability to notice, assess, and repair problems. The goal is to make artificial systems more robust and less dependent on their human designers.