Goto

Collaborating Authors

 O'Sullivan, Conor


Enhancing coastal water body segmentation with Landsat Irish Coastal Segmentation (LICS) dataset

arXiv.org Artificial Intelligence

Ireland's coastline, a critical and dynamic resource, is facing challenges such as erosion, sedimentation, and human activities. Monitoring these changes is a complex task we approach using a combination of satellite imagery and deep learning methods. However, limited research exists in this area, particularly for Ireland. This paper presents the Landsat Irish Coastal Segmentation (LICS) dataset, which aims to facilitate the development of deep learning methods for coastal water body segmentation while addressing modelling challenges specific to Irish meteorology and coastal types. The dataset is used to evaluate various automated approaches for segmentation, with U-NET achieving the highest accuracy of 95.0% among deep learning methods. Nevertheless, the Normalised Difference Water Index (NDWI) benchmark outperformed U-NET with an average accuracy of 97.2%. The study suggests that deep learning approaches can be further improved with more accurate training data and by considering alternative measurements of erosion. The LICS dataset and code are freely available to support reproducible research and further advancements in coastal monitoring efforts.


Automated Coastline Extraction Using Edge Detection Algorithms

arXiv.org Artificial Intelligence

We analyse the effectiveness of edge detection algorithms for the purpose of automatically extracting coastlines from satellite images. Four algorithms - Canny, Sobel, Scharr and Prewitt are compared visually and using metrics. With an average SSIM of 0.8, Canny detected edges that were closest to the reference edges. However, the algorithm had difficulty distinguishing noisy edges, e.g. due to development, from coastline edges. In addition, histogram equalization and Gaussian blur were shown to improve the effectiveness of the edge detection algorithms by up to 1.5 and 1.6 times respectively.


The Effectiveness of Edge Detection Evaluation Metrics for Automated Coastline Detection

arXiv.org Artificial Intelligence

We analyse the effectiveness of RMSE, PSNR, SSIM and FOM for evaluating edge detection algorithms used for automated coastline detection. Typically, the accuracy of detected coastlines is assessed visually. This can be impractical on a large scale leading to the need for objective evaluation metrics. Hence, we conduct an experiment to find reliable metrics. We apply Canny edge detection to 95 coastline satellite images across 49 testing locations. We vary the Hysteresis thresholds and compare metric values to a visual analysis of detected edges. We found that FOM was the most reliable metric for selecting the best threshold. It could select a better threshold 92.6% of the time and the best threshold 66.3% of the time. This is compared RMSE, PSNR and SSIM which could select the best threshold 6.3%, 6.3% and 11.6% of the time respectively. We provide a reason for these results by reformulating RMSE, PSNR and SSIM in terms of confusion matrix measures. This suggests these metrics not only fail for this experiment but are not useful for evaluating edge detection in general.


Interpreting a Semantic Segmentation Model for Coastline Detection

arXiv.org Artificial Intelligence

We interpret a deep-learning semantic segmentation model used to classify coastline satellite images into land and water. This is to build trust in the model and gain new insight into the process of coastal water body extraction. Specifically, we seek to understand which spectral bands are important for predicting segmentation masks. This is done using a permutation importance approach. Results show that the NIR is the most important spectral band. Permuting this band lead to a decrease in accuracy of 38.12 percentage points. This is followed by Water Vapour, SWIR 1, and Blue bands with 2.58, 0.78 and 0.19 respectively. Water Vapour is not typically used in water indices and these results suggest it may be useful for water body extraction. Permuting, the Coastal Aerosol, Green, Red, RE1, RE2, RE3, RE4, and SWIR 2 bands did not decrease accuracy. This suggests they could be excluded from future model builds reducing complexity and computational requirements.