Goto

Collaborating Authors

 O'Hara, Patrick


Decision Making under the Exponential Family: Distributionally Robust Optimisation with Bayesian Ambiguity Sets

arXiv.org Artificial Intelligence

Decision making under uncertainty is challenging as the data-generating process (DGP) is often unknown. Bayesian inference proceeds by estimating the DGP through posterior beliefs on the model's parameters. However, minimising the expected risk under these beliefs can lead to suboptimal decisions due to model uncertainty or limited, noisy observations. To address this, we introduce Distributionally Robust Optimisation with Bayesian Ambiguity Sets (DRO-BAS) which hedges against model uncertainty by optimising the worst-case risk over a posterior-informed ambiguity set. We provide two such sets, based on posterior expectations (DRO-BAS(PE)) or posterior predictives (DRO-BAS(PP)) and prove that both admit, under conditions, strong dual formulations leading to efficient single-stage stochastic programs which are solved with a sample average approximation. For DRO-BAS(PE) this covers all conjugate exponential family members while for DRO-BAS(PP) this is shown under conditions on the predictive's moment generating function. Our DRO-BAS formulations Pareto dominate existing Bayesian DRO on the Newsvendor problem and achieve faster solve times with comparable robustness on the Portfolio problem.


On the Constrained Least-cost Tour Problem

arXiv.org Artificial Intelligence

We introduce the Constrained Least-cost Tour (CLT) problem: given an undirected graph with weight and cost functions on the edges, minimise the total cost of a tour rooted at a start vertex such that the total weight lies within a given range. CLT is related to the family of Travelling Salesman Problems with Profits, but differs by defining the weight function on edges instead of vertices, and by requiring the total weight to be within a range instead of being at least some quota. We prove CLT is $\mathcal{NP}$-hard, even in the simple case when the input graph is a path. We derive an informative lower bound by relaxing the integrality of edges and propose a heuristic motivated by this relaxation. For the case that requires the tour to be a simple cycle, we develop two heuristics which exploit Suurballe's algorithm to find low-cost, weight-feasible cycles. We demonstrate our algorithms by addressing a real-world problem that affects urban populations: finding routes that minimise air pollution exposure for walking, running and cycling in the city of London.