Goto

Collaborating Authors

 O'Connell, Allison


Evaluating and Personalizing User-Perceived Quality of Text-to-Speech Voices for Delivering Mindfulness Meditation with Different Physical Embodiments

arXiv.org Artificial Intelligence

Mindfulness-based therapies have been shown to be effective in improving mental health, and technology-based methods have the potential to expand the accessibility of these therapies. To enable real-time personalized content generation for mindfulness practice in these methods, high-quality computer-synthesized text-to-speech (TTS) voices are needed to provide verbal guidance and respond to user performance and preferences. However, the user-perceived quality of state-of-the-art TTS voices has not yet been evaluated for administering mindfulness meditation, which requires emotional expressiveness. In addition, work has not yet been done to study the effect of physical embodiment and personalization on the user-perceived quality of TTS voices for mindfulness. To that end, we designed a two-phase human subject study. In Phase 1, an online Mechanical Turk between-subject study (N=471) evaluated 3 (feminine, masculine, child-like) state-of-the-art TTS voices with 2 (feminine, masculine) human therapists' voices in 3 different physical embodiment settings (no agent, conversational agent, socially assistive robot) with remote participants. Building on findings from Phase 1, in Phase 2, an in-person within-subject study (N=94), we used a novel framework we developed for personalizing TTS voices based on user preferences, and evaluated user-perceived quality compared to best-rated non-personalized voices from Phase 1. We found that the best-rated human voice was perceived better than all TTS voices; the emotional expressiveness and naturalness of TTS voices were poorly rated, while users were satisfied with the clarity of TTS voices. Surprisingly, by allowing users to fine-tune TTS voice features, the user-personalized TTS voices could perform almost as well as human voices, suggesting user personalization could be a simple and very effective tool to improve user-perceived quality of TTS voice.


Build Your Own Robot Friend: An Open-Source Learning Module for Accessible and Engaging AI Education

arXiv.org Artificial Intelligence

As artificial intelligence (AI) is playing an increasingly important role in our society and global economy, AI education and literacy have become necessary components in college and K-12 education to prepare students for an AI-powered society. However, current AI curricula have not yet been made accessible and engaging enough for students and schools from all socio-economic backgrounds with different educational goals. In this work, we developed an open-source learning module for college and high school students, which allows students to build their own robot companion from the ground up. This open platform can be used to provide hands-on experience and introductory knowledge about various aspects of AI, including robotics, machine learning (ML), software engineering, and mechanical engineering. Because of the social and personal nature of a socially assistive robot companion, this module also puts a special emphasis on human-centered AI, enabling students to develop a better understanding of human-AI interaction and AI ethics through hands-on learning activities. With open-source documentation, assembling manuals and affordable materials, students from different socio-economic backgrounds can personalize their learning experience based on their individual educational goals. To evaluate the student-perceived quality of our module, we conducted a usability testing workshop with 15 college students recruited from a minority-serving institution. Our results indicate that our AI module is effective, easy-to-follow, and engaging, and it increases student interest in studying AI/ML and robotics in the future. We hope that this work will contribute toward accessible and engaging AI education in human-AI interaction for college and high school students.