Goto

Collaborating Authors

 O'Boyle, Michael F. P.


What I cannot execute, I do not understand: Training and Evaluating LLMs on Program Execution Traces

arXiv.org Artificial Intelligence

O'Boyle 1, Sida Wang 2, Gabriel Synnaeve 2, Hugh Leather 2 1 University of Edinburgh 2 Meta AI A BSTRACT Code generation and understanding are critical capabilities for large language models (LLMs). Thus, most LLMs are pretrained and fine-tuned on code data. However, these datasets typically treat code as static strings and rarely exploit the dynamic information about their execution. Building upon previous work on trace modeling, we study Execution Tuning (E.T.), a training procedure in which we explicitly model real-world program execution traces without requiring manual test annotations. We train and evaluate models on different execution trace granularities (line and instruction-level) and strategies on the task of output prediction, obtaining 80% accuracy on CruxEval and MBPP, and showing the advantages of dynamic scratchpads (i.e., self-contained intermediate computations updated by the model rather than accumulated as a history of past computations) on long executions (up to 14k steps). Finally, we discuss E.T.'s practical applications. Current state-of-the-art general-purpose LLMs are thought to contain considerable proportions of code in their pretraining data (OpenAI et al., 2024), which is known to improve reasoning capabilities even in tasks seemingly unrelated to code (Aryabumi et al., 2024). However, datasets used to train code LLMs (such as Lozhkov et al. (2024)) typically treat code as static strings and rarely exploit the dynamic information about their execution. Executability is one of the key differences between code and natural language, and most code datasets neglect dimensions of the code domain such as reasoning over code execution, which in turn could lead to better code understanding. This fundamental limitation has sparked a renewed interest in modeling program executions, connecting with the pre-LLM neural program evaluation literature (Zaremba & Sutskever, 2014; Graves et al., 2014), which studied whether neural networks could learn to execute programs.


Forklift: An Extensible Neural Lifter

arXiv.org Artificial Intelligence

The escalating demand to migrate legacy software across different Instruction Set Architectures (ISAs) has driven the development of assembly-to-assembly translators to map between their respective assembly languages. However, the development of these tools requires substantial engineering effort. State-of-the-art approaches use lifting, a technique where source assembly code is translated to an architecture-independent intermediate representation (IR) (for example, the LLVM IR) and use a pre-existing compiler to recompile the IR to the target ISA. However, the hand-written rules these lifters employ are sensitive to the particular compiler and optimization level used to generate the code and require significant engineering effort to support each new ISA. We propose Forklift, the first neural lifter that learns how to translate assembly to LLVM IR using a token-level encoder-decoder Transformer. We show how to incrementally add support to new ISAs by fine tuning the assembly encoder and freezing the IR decoder, improving the overall accuracy and efficiency. We collect millions of parallel LLVM IR, x86, ARM, and RISC-V programs across compilers and optimization levels to train Forklift and set up an input/output-based accuracy harness. We evaluate Forklift on two challenging benchmark suites and translate 2.5x more x86 programs than a state-of-the-art hand-written lifter and 4.4x more x86 programs than GPT-4 as well as enabling translation from new ISAs.


SLaDe: A Portable Small Language Model Decompiler for Optimized Assembly

arXiv.org Artificial Intelligence

Decompilation is a well-studied area with numerous high-quality tools available. These are frequently used for security tasks and to port legacy code. However, they regularly generate difficult-to-read programs and require a large amount of engineering effort to support new programming languages and ISAs. Recent interest in neural approaches has produced portable tools that generate readable code. However, to-date such techniques are usually restricted to synthetic programs without optimization, and no models have evaluated their portability. Furthermore, while the code generated may be more readable, it is usually incorrect. This paper presents SLaDe, a Small Language model Decompiler based on a sequence-to-sequence transformer trained over real-world code. We develop a novel tokenizer and exploit no-dropout training to produce high-quality code. We utilize type-inference to generate programs that are more readable and accurate than standard analytic and recent neural approaches. Unlike standard approaches, SLaDe can infer out-of-context types and unlike neural approaches, it generates correct code. We evaluate SLaDe on over 4,000 functions from AnghaBench on two ISAs and at two optimizations levels. SLaDe is up to 6 times more accurate than Ghidra, a state-of-the-art, industrial-strength decompiler and up to 4 times more accurate than the large language model ChatGPT and generates significantly more readable code than both.


mlirSynth: Automatic, Retargetable Program Raising in Multi-Level IR using Program Synthesis

arXiv.org Artificial Intelligence

MLIR is an emerging compiler infrastructure for modern hardware, but existing programs cannot take advantage of MLIR's high-performance compilation if they are described in lower-level general purpose languages. Consequently, to avoid programs needing to be rewritten manually, this has led to efforts to automatically raise lower-level to higher-level dialects in MLIR. However, current methods rely on manually-defined raising rules, which limit their applicability and make them challenging to maintain as MLIR dialects evolve. We present mlirSynth -- a novel approach which translates programs from lower-level MLIR dialects to high-level ones without manually defined rules. Instead, it uses available dialect definitions to construct a program space and searches it effectively using type constraints and equivalences. We demonstrate its effectiveness \revi{by raising C programs} to two distinct high-level MLIR dialects, which enables us to use existing high-level dialect specific compilation flows. On Polybench, we show a greater coverage than previous approaches, resulting in geomean speedups of 2.5x (Intel) and 3.4x (AMD) over state-of-the-art compilation flows for the C programming language. mlirSynth also enables retargetability to domain-specific accelerators, resulting in a geomean speedup of 21.6x on a TPU.