Nuara, Alessandro
Dynamic Pricing with Volume Discounts in Online Settings
Mussi, Marco, Genalti, Gianmarco, Nuara, Alessandro, Trovò, Francesco, Restelli, Marcello, Gatti, Nicola
According to the main international reports, more pervasive industrial and business-process automation, thanks to machine learning and advanced analytic tools, will unlock more than 14 trillion USD worldwide annually by 2030. In the specific case of pricing problems-which constitute the class of problems we investigate in this paper-, the estimated unlocked value will be about 0.5 trillion USD per year. In particular, this paper focuses on pricing in e-commerce when the objective function is profit maximization and only transaction data are available. This setting is one of the most common in real-world applications. Our work aims to find a pricing strategy that allows defining optimal prices at different volume thresholds to serve different classes of users. Furthermore, we face the major challenge, common in real-world settings, of dealing with limited data available. We design a two-phase online learning algorithm, namely PVD-B, capable of exploiting the data incrementally in an online fashion. The algorithm first estimates the demand curve and retrieves the optimal average price, and subsequently it offers discounts to differentiate the prices for each volume threshold. We ran a real-world 4-month-long A/B testing experiment in collaboration with an Italian e-commerce company, in which our algorithm PVD-B-corresponding to A configuration-has been compared with human pricing specialists-corresponding to B configuration. At the end of the experiment, our algorithm produced a total turnover of about 300 KEuros, outperforming the B configuration performance by about 55%. The Italian company we collaborated with decided to adopt our algorithm for more than 1,200 products since January 2022.
Safe Online Bid Optimization with Return-On-Investment and Budget Constraints subject to Uncertainty
Castiglioni, Matteo, Nuara, Alessandro, Romano, Giulia, Spadaro, Giorgio, Trovò, Francesco, Gatti, Nicola
In online marketing, the advertisers' goal is usually a tradeoff between achieving high volumes and high profitability. The companies' business units customarily address this tradeoff by maximizing the volumes while guaranteeing a lower bound to the Return On Investment (ROI). This paper investigates combinatorial bandit algorithms for the bid optimization of advertising campaigns subject to uncertain budget and ROI constraints. We study the nature of both the optimization and learning problems. In particular, when focusing on the optimization problem without uncertainty, we show that it is inapproximable within any factor unless P=NP, and we provide a pseudo-polynomial-time algorithm that achieves an optimal solution. When considering uncertainty, we prove that no online learning algorithm can violate the (ROI or budget) constraints during the learning process a sublinear number of times while guaranteeing a sublinear pseudo-regret. Thus, we provide an algorithm, namely GCB, guaranteeing sublinear regret at the cost of a potentially linear number of constraints violations. We also design its safe version, namely GCB_{safe}, guaranteeing w.h.p. a constant upper bound on the number of constraints violations at the cost of a linear pseudo-regret. More interestingly, we provide an algorithm, namely GCB_{safe}(\psi,\phi), guaranteeing both sublinear pseudo-regret and safety w.h.p. at the cost of accepting tolerances \psi and \phi in the satisfaction of the ROI and budget constraints, respectively. This algorithm actually mitigates the risks due to the constraints violations without precluding the convergence to the optimal solution. Finally, we experimentally compare our algorithms in terms of pseudo-regret/constraint-violation tradeoff in settings generated from real-world data, showing the importance of adopting safety constraints in practice and the effectiveness of our algorithms.
A Combinatorial-Bandit Algorithm for the Online Joint Bid/Budget Optimization of Pay-per-Click Advertising Campaigns
Nuara, Alessandro (Politecnico di Milano) | Trovò, Francesco (Politecnico di Milano) | Gatti, Nicola (Politecnico di Milano) | Restelli, Marcello (Politecnico di Milano)
Pay-per-click advertising includes various formats (e.g., search, contextual, and social) with a total investment of more than 140 billion USD per year. An advertising campaign is composed of some subcampaigns-each with a different ad-and a cumulative daily budget. The allocation of the ads is ruled exploiting auction mechanisms. In this paper, we propose, for the first time to the best of our knowledge, an algorithm for the online joint bid/budget optimization of pay-per-click multi-channel advertising campaigns. We formulate the optimization problem as a combinatorial bandit problem, in which we use Gaussian Processes to estimate stochastic functions, Bayesian bandit techniques to address the exploration/exploitation problem, and a dynamic programming technique to solve a variation of the Multiple-Choice Knapsack problem. We experimentally evaluate our algorithm both in simulation-using a synthetic setting generated from real data from Yahoo!-and in a real-world application over an advertising period of two months.
Estimating the Maximum Expected Value in Continuous Reinforcement Learning Problems
D' (Politecnico di Milano) | Eramo, Carlo (Politecnico di Milano) | Nuara, Alessandro (Politecnico di Milano) | Pirotta, Matteo (Politecnico di Milano) | Restelli, Marcello
This paper is about the estimation of the maximum expected value of an infinite set of random variables.This estimation problem is relevant in many fields, like the Reinforcement Learning (RL) one.In RL it is well known that, in some stochastic environments, a bias in the estimation error can increase step-by-step the approximation error leading to large overestimates of the true action values. Recently, some approaches have been proposed to reduce such bias in order to get better action-value estimates, but are limited to finite problems.In this paper, we leverage on the recently proposed weighted estimator and on Gaussian process regression to derive a new method that is able to natively handle infinitely many random variables.We show how these techniques can be used to face both continuous state and continuous actions RL problems.To evaluate the effectiveness of the proposed approach we perform empirical comparisons with related approaches.