Noy, Natasha
Gemma 3 Technical Report
Gemma Team, null, Kamath, Aishwarya, Ferret, Johan, Pathak, Shreya, Vieillard, Nino, Merhej, Ramona, Perrin, Sarah, Matejovicova, Tatiana, Ramé, Alexandre, Rivière, Morgane, Rouillard, Louis, Mesnard, Thomas, Cideron, Geoffrey, Grill, Jean-bastien, Ramos, Sabela, Yvinec, Edouard, Casbon, Michelle, Pot, Etienne, Penchev, Ivo, Liu, Gaël, Visin, Francesco, Kenealy, Kathleen, Beyer, Lucas, Zhai, Xiaohai, Tsitsulin, Anton, Busa-Fekete, Robert, Feng, Alex, Sachdeva, Noveen, Coleman, Benjamin, Gao, Yi, Mustafa, Basil, Barr, Iain, Parisotto, Emilio, Tian, David, Eyal, Matan, Cherry, Colin, Peter, Jan-Thorsten, Sinopalnikov, Danila, Bhupatiraju, Surya, Agarwal, Rishabh, Kazemi, Mehran, Malkin, Dan, Kumar, Ravin, Vilar, David, Brusilovsky, Idan, Luo, Jiaming, Steiner, Andreas, Friesen, Abe, Sharma, Abhanshu, Sharma, Abheesht, Gilady, Adi Mayrav, Goedeckemeyer, Adrian, Saade, Alaa, Feng, Alex, Kolesnikov, Alexander, Bendebury, Alexei, Abdagic, Alvin, Vadi, Amit, György, András, Pinto, André Susano, Das, Anil, Bapna, Ankur, Miech, Antoine, Yang, Antoine, Paterson, Antonia, Shenoy, Ashish, Chakrabarti, Ayan, Piot, Bilal, Wu, Bo, Shahriari, Bobak, Petrini, Bryce, Chen, Charlie, Lan, Charline Le, Choquette-Choo, Christopher A., Carey, CJ, Brick, Cormac, Deutsch, Daniel, Eisenbud, Danielle, Cattle, Dee, Cheng, Derek, Paparas, Dimitris, Sreepathihalli, Divyashree Shivakumar, Reid, Doug, Tran, Dustin, Zelle, Dustin, Noland, Eric, Huizenga, Erwin, Kharitonov, Eugene, Liu, Frederick, Amirkhanyan, Gagik, Cameron, Glenn, Hashemi, Hadi, Klimczak-Plucińska, Hanna, Singh, Harman, Mehta, Harsh, Lehri, Harshal Tushar, Hazimeh, Hussein, Ballantyne, Ian, Szpektor, Idan, Nardini, Ivan, Pouget-Abadie, Jean, Chan, Jetha, Stanton, Joe, Wieting, John, Lai, Jonathan, Orbay, Jordi, Fernandez, Joseph, Newlan, Josh, Ji, Ju-yeong, Singh, Jyotinder, Black, Kat, Yu, Kathy, Hui, Kevin, Vodrahalli, Kiran, Greff, Klaus, Qiu, Linhai, Valentine, Marcella, Coelho, Marina, Ritter, Marvin, Hoffman, Matt, Watson, Matthew, Chaturvedi, Mayank, Moynihan, Michael, Ma, Min, Babar, Nabila, Noy, Natasha, Byrd, Nathan, Roy, Nick, Momchev, Nikola, Chauhan, Nilay, Sachdeva, Noveen, Bunyan, Oskar, Botarda, Pankil, Caron, Paul, Rubenstein, Paul Kishan, Culliton, Phil, Schmid, Philipp, Sessa, Pier Giuseppe, Xu, Pingmei, Stanczyk, Piotr, Tafti, Pouya, Shivanna, Rakesh, Wu, Renjie, Pan, Renke, Rokni, Reza, Willoughby, Rob, Vallu, Rohith, Mullins, Ryan, Jerome, Sammy, Smoot, Sara, Girgin, Sertan, Iqbal, Shariq, Reddy, Shashir, Sheth, Shruti, Põder, Siim, Bhatnagar, Sijal, Panyam, Sindhu Raghuram, Eiger, Sivan, Zhang, Susan, Liu, Tianqi, Yacovone, Trevor, Liechty, Tyler, Kalra, Uday, Evci, Utku, Misra, Vedant, Roseberry, Vincent, Feinberg, Vlad, Kolesnikov, Vlad, Han, Woohyun, Kwon, Woosuk, Chen, Xi, Chow, Yinlam, Zhu, Yuvein, Wei, Zichuan, Egyed, Zoltan, Cotruta, Victor, Giang, Minh, Kirk, Phoebe, Rao, Anand, Black, Kat, Babar, Nabila, Lo, Jessica, Moreira, Erica, Martins, Luiz Gustavo, Sanseviero, Omar, Gonzalez, Lucas, Gleicher, Zach, Warkentin, Tris, Mirrokni, Vahab, Senter, Evan, Collins, Eli, Barral, Joelle, Ghahramani, Zoubin, Hadsell, Raia, Matias, Yossi, Sculley, D., Petrov, Slav, Fiedel, Noah, Shazeer, Noam, Vinyals, Oriol, Dean, Jeff, Hassabis, Demis, Kavukcuoglu, Koray, Farabet, Clement, Buchatskaya, Elena, Alayrac, Jean-Baptiste, Anil, Rohan, Dmitry, null, Lepikhin, null, Borgeaud, Sebastian, Bachem, Olivier, Joulin, Armand, Andreev, Alek, Hardin, Cassidy, Dadashi, Robert, Hussenot, Léonard
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
Not Every AI Problem is a Data Problem: We Should Be Intentional About Data Scaling
Rodchenko, Tanya, Noy, Natasha, Scherrer, Nino, Prendki, Jennifer
For example, translation between languages exhibits regular and persistent patterns at different scales (across sentences, paragraphs, documents). In general, language patterns are stable over time. We know what type of data we need to expand to new languages. And while it may be challenging to acquire the data for rare or only spoken languages, it is easy to judge whether newly acquired data is what we need. In contrast, use cases where data lacks strong, persistent topological features or where the structure is highly fragmented or unstable over time, may not be as well-suited for data scaling approaches.
DMLR: Data-centric Machine Learning Research -- Past, Present and Future
Oala, Luis, Maskey, Manil, Bat-Leah, Lilith, Parrish, Alicia, Gürel, Nezihe Merve, Kuo, Tzu-Sheng, Liu, Yang, Dror, Rotem, Brajovic, Danilo, Yao, Xiaozhe, Bartolo, Max, Rojas, William A Gaviria, Hileman, Ryan, Aliment, Rainier, Mahoney, Michael W., Risdal, Meg, Lease, Matthew, Samek, Wojciech, Dutta, Debojyoti, Northcutt, Curtis G, Coleman, Cody, Hancock, Braden, Koch, Bernard, Tadesse, Girmaw Abebe, Karlaš, Bojan, Alaa, Ahmed, Dieng, Adji Bousso, Noy, Natasha, Reddi, Vijay Janapa, Zou, James, Paritosh, Praveen, van der Schaar, Mihaela, Bollacker, Kurt, Aroyo, Lora, Zhang, Ce, Vanschoren, Joaquin, Guyon, Isabelle, Mattson, Peter
Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science. We chart a path forward as a collective effort to sustain the creation and maintenance of these datasets and methods towards positive scientific, societal and business impact.