Goto

Collaborating Authors

 Nowak, Rob


Practical, Provably-Correct Interactive Learning in the Realizable Setting: The Power of True Believers

arXiv.org Machine Learning

We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification. We begin our investigation with the observation that agnostic algorithms \emph{cannot} be minimax-optimal in the realizable setting. Hence, we design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors and are general-purpose, accommodating a wide variety of function classes including kernel methods, H{\"o}lder smooth functions, and convex functions. The sample complexities of our algorithms can be quantified in terms of well-known quantities like the extended teaching dimension and haystack dimension. However, unlike algorithms based directly on those combinatorial quantities, our algorithms are computationally efficient. To achieve computational efficiency, our algorithms sample from the version space using Monte Carlo "hit-and-run" algorithms instead of maintaining the version space explicitly. Our approach has two key strengths. First, it is simple, consisting of two unifying, greedy algorithms. Second, our algorithms have the capability to seamlessly leverage prior knowledge that is often available and useful in practice. In addition to our new theoretical results, we demonstrate empirically that our algorithms are competitive with Gaussian process UCB methods.


Finite Sample Prediction and Recovery Bounds for Ordinal Embedding

Neural Information Processing Systems

The goal of ordinal embedding is to represent items as points in a low-dimensional Euclidean space given a set of constraints like ``item $i$ is closer to item $j$ than item $k$''. Ordinal constraints like this often come from human judgments. The classic approach to solving this problem is known as non-metric multidimensional scaling. To account for errors and variation in judgments, we consider the noisy situation in which the given constraints are independently corrupted by reversing the correct constraint with some probability. The ordinal embedding problem has been studied for decades, but most past work pays little attention to the question of whether accurate embedding is possible, apart from empirical studies. This paper shows that under a generative data model it is possible to learn the correct embedding from noisy distance comparisons. In establishing this fundamental result, the paper makes several new contributions. First, we derive prediction error bounds for embedding from noisy distance comparisons by exploiting the fact that the rank of a distance matrix of points in $\R^d$ is at most $d+2$. These bounds characterize how well a learned embedding predicts new comparative judgments. Second, we show that the underlying embedding can be recovered by solving a simple convex optimization. This result is highly non-trivial since we show that the linear map corresponding to distance comparisons is non-invertible, but there exists a nonlinear map that is invertible. Third, two new algorithms for ordinal embedding are proposed and evaluated in experiments.


NEXT: A System for Real-World Development, Evaluation, and Application of Active Learning

Neural Information Processing Systems

Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for real-world, reproducible active learning research. This paper details the challenges of building the system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.


Sparse Overlapping Sets Lasso for Multitask Learning and its Application to fMRI Analysis

Neural Information Processing Systems

Multitask learning can be effective when features useful in one task are also useful for other tasks, and the group lasso is a standard method for selecting a common subset of features. In this paper, we are interested in a less restrictive form of multitask learning, wherein (1) the available features can be organized into subsets according to a notion of similarity and (2) features useful in one task are similar, but not necessarily identical, to the features best suited for other tasks. The main contribution of this paper is a new procedure called {\em Sparse Overlapping Sets (SOS) lasso}, a convex optimization that automatically selects similar features for related learning tasks. Error bounds are derived for SOSlasso and its consistency is established for squared error loss. In particular, SOSlasso is motivated by multi-subject fMRI studies in which functional activity is classified using brain voxels as features. Experiments with real and synthetic data demonstrate the advantages of SOSlasso compared to the lasso and group lasso.