Goto

Collaborating Authors

 Novais, Paulo


The Impact of Artificial Intelligence on Emergency Medicine: A Review of Recent Advances

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) is revolutionizing emergency medicine by enhancing diagnostic processes and improving patient outcomes. This article provides a comprehensive review of the current applications of AI in emergency imaging studies, focusing on the last five years of advancements. AI technologies, particularly machine learning and deep learning, are pivotal in interpreting complex imaging data, offering rapid, accurate diagnoses and potentially surpassing traditional diagnostic methods. Studies highlighted within the article demonstrate AI's capabilities in accurately detecting conditions such as fractures, pneumothorax, and pulmonary diseases from various imaging modalities including X-rays, CT scans, and MRIs. Furthermore, AI's ability to predict clinical outcomes like mechanical ventilation needs illustrates its potential in crisis resource optimization. Despite these advancements, the integration of AI into clinical practice presents challenges such as data privacy, algorithmic bias, and the need for extensive validation across diverse settings. This review underscores the transformative potential of AI in emergency settings, advocating for a future where AI and clinical expertise synergize to elevate patient care standards.


Middleware-based multi-agent development environment for building and testing distributed intelligent systems

arXiv.org Artificial Intelligence

The spread of the Internet of Things (IoT) is demanding new, powerful architectures for handling the huge amounts of data produced by the IoT devices. In many scenarios, many existing isolated solutions applied to IoT devices use a set of rules to detect, report and mitigate malware activities or threats. This paper describes a development environment that allows the programming and debugging of such rule-based multi-agent solutions. The solution consists of the integration of a rule engine into the agent, the use of a specialized, wrapping agent class with a graphical user interface for programming and testing purposes, and a mechanism for the incremental composition of behaviors. Finally, a set of examples and a comparative study were accomplished to test the suitability and validity of the approach. The JADE multi-agent middleware has been used for the practical implementation of the approach.


Ontology Alignment through Argumentation

AAAI Conferences

Currently, the majority of matchers are able to establish simple correspondences between entities, but are not able to provide complex alignments. Furthermore, the resulting alignments do not contain additional information on how they were extracted and formed. Not only it becomes hard to debug the alignment results, but it is also difficult to justify correspondences. We propose a method to generate complex ontology alignments that captures the semantics of matching algorithms and human-oriented ontology alignment definition processes. Through these semantics, arguments that provide an abstraction over the specificities of the alignment process are generated and used by agents to share, negotiate and combine correspondences. After the negotiation process, the resulting arguments and their relations can be visualized by humans in order to debug and understand the given correspondences.