Goto

Collaborating Authors

 Nouri, Marzia


Latent Concept-based Explanation of NLP Models

arXiv.org Artificial Intelligence

Interpreting and understanding the predictions made by deep learning models poses a formidable challenge due to their inherently opaque nature. Many previous efforts aimed at explaining these predictions rely on input features, specifically, the words within NLP models. However, such explanations are often less informative due to the discrete nature of these words and their lack of contextual verbosity. To address this limitation, we introduce the Latent Concept Attribution method (LACOAT), which generates explanations for predictions based on latent concepts. Our foundational intuition is that a word can exhibit multiple facets, contingent upon the context in which it is used. Therefore, given a word in context, the latent space derived from our training process reflects a specific facet of that word. LACOAT functions by mapping the representations of salient input words into the training latent space, allowing it to provide latent context-based explanations of the prediction.


Khayyam Challenge (PersianMMLU): Is Your LLM Truly Wise to The Persian Language?

arXiv.org Artificial Intelligence

Evaluating Large Language Models (LLMs) is challenging due to their generative nature, necessitating precise evaluation methodologies. Additionally, non-English LLM evaluation lags behind English, resulting in the absence or weakness of LLMs for many languages. In response to this necessity, we introduce Khayyam Challenge (also known as PersianMMLU), a meticulously curated collection comprising 20,192 four-choice questions sourced from 38 diverse tasks extracted from Persian examinations, spanning a wide spectrum of subjects, complexities, and ages. The primary objective of the Khayyam Challenge is to facilitate the rigorous evaluation of LLMs that support the Persian language. Distinctive features of the Khayyam Challenge are (i) its comprehensive coverage of various topics, including literary comprehension, mathematics, sciences, logic, intelligence testing, etc aimed at assessing different facets of LLMs such as language comprehension, reasoning, and information retrieval across various educational stages, from lower primary school to upper secondary school (ii) its inclusion of rich metadata such as human response rates, difficulty levels, and descriptive answers (iii) its utilization of new data to avoid data contamination issues prevalent in existing frameworks (iv) its use of original, non-translated data tailored for Persian speakers, ensuring the framework is free from translation challenges and errors while encompassing cultural nuances (v) its inherent scalability for future data updates and evaluations without requiring special human effort. Previous works lacked an evaluation framework that combined all of these features into a single comprehensive benchmark. Furthermore, we evaluate a wide range of existing LLMs that support the Persian language, with statistical analyses and interpretations of their outputs. We believe that the Khayyam Challenge will improve advancements in LLMs for the Persian language by highlighting the existing limitations of current models, while also enhancing the precision and depth of evaluations on LLMs, even within the English language context.