Goto

Collaborating Authors

 Nortje, Leanne


Visually Grounded Speech Models have a Mutual Exclusivity Bias

arXiv.org Artificial Intelligence

When children learn new words, they employ constraints such as the mutual exclusivity (ME) bias: a novel word is mapped to a novel object rather than a familiar one. This bias has been studied computationally, but only in models that use discrete word representations as input, ignoring the high variability of spoken words. We investigate the ME bias in the context of visually grounded speech models that learn from natural images and continuous speech audio. Concretely, we train a model on familiar words and test its ME bias by asking it to select between a novel and a familiar object when queried with a novel word. To simulate prior acoustic and visual knowledge, we experiment with several initialisation strategies using pretrained speech and vision networks. Our findings reveal the ME bias across the different initialisation approaches, with a stronger bias in models with more prior (in particular, visual) knowledge. Additional tests confirm the robustness of our results, even when different loss functions are considered.


Visually grounded few-shot word learning in low-resource settings

arXiv.org Artificial Intelligence

We propose a visually grounded speech model that learns new words and their visual depictions from just a few word-image example pairs. Given a set of test images and a spoken query, we ask the model which image depicts the query word. Previous work has simplified this few-shot learning problem by either using an artificial setting with digit word-image pairs or by using a large number of examples per class. Moreover, all previous studies were performed using English speech-image data. We propose an approach that can work on natural word-image pairs but with less examples, i.e. fewer shots, and then illustrate how this approach can be applied for multimodal few-shot learning in a real low-resource language, Yoruba. Our approach involves using the given word-image example pairs to mine new unsupervised word-image training pairs from large collections of unlabelledspeech and images. Additionally, we use a word-to-image attention mechanism to determine word-image similarity. With this new model, we achieve better performance with fewer shots than previous approaches on an existing English benchmark. Many of the model's mistakes are due to confusion between visual concepts co-occurring in similar contexts. The experiments on Yoruba show the benefit of transferring knowledge from a multimodal model trained on a larger set of English speech-image data.


Visually grounded few-shot word acquisition with fewer shots

arXiv.org Artificial Intelligence

We propose a visually grounded speech model that acquires new words and their visual depictions from just a few word-image example pairs. Given a set of test images and a spoken query, we ask the model which image depicts the query word. Previous work has simplified this problem by either using an artificial setting with digit word-image pairs or by using a large number of examples per class. We propose an approach that can work on natural word-image pairs but with less examples, i.e. fewer shots. Our approach involves using the given word-image example pairs to mine new unsupervised word-image training pairs from large collections of unlabelled speech and images. Additionally, we use a word-to-image attention mechanism to determine word-image similarity. With this new model, we achieve better performance with fewer shots than any existing approach.