Nokhiz, Pegah
Precarity: Modeling the Long Term Effects of Compounded Decisions on Individual Instability
Nokhiz, Pegah, Ruwanpathirana, Aravinda Kanchana, Patwari, Neal, Venkatasubramanian, Suresh
The study of the social impact of automated decision making has focused largely on issues of fairness at the point of decision, evaluating the fairness (with respect to a population) of a sequence or pipeline of decisions, or examining the dynamics of a game between the decision-maker and the decision subject. What is missing from this study is an examination of precarity: a term coined by Judith Butler to describe an unstable state of existence in which negative decisions can have ripple effects on one's well-being. Such ripple effects are not captured by changes in income or wealth alone or by one decision alone. To study precarity, we must reorient our frame of reference away from the decision-maker and towards the decision subject; away from aggregates of decisions over a population and towards aggregates of decisions (for an individual) over time. An individual who lives with higher precarity is more affected and less able to recover by the same negative decision than another with low precarity. Thus including only the direct impact of a single decision or a few decisions is insufficient to judge if that system was fair. However, precarity is not an attribute of an individual; it is a result of being subject to greater risks and fewer supports, in addition to starting off at a less secure position. Precarity is impacted by racism, sexism, ableism, heterosexism, and other systems of oppression, and an individual's intersectional identity may put one at greater risk in society, subject to a lower income for the same job, less able to build wealth even at the same income level, and less able to recover from harm.
INFOTABS: Inference on Tables as Semi-structured Data
Gupta, Vivek, Mehta, Maitrey, Nokhiz, Pegah, Srikumar, Vivek
In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.
Equalizing Recourse across Groups
Gupta, Vivek, Nokhiz, Pegah, Roy, Chitradeep Dutta, Venkatasubramanian, Suresh
The rise in machine learning-assisted decision-making has led to concerns about the fairness of the decisions and techniques to mitigate problems of discrimination. If a negative decision is made about an individual (denying a loan, rejecting an application for housing, and so on) justice dictates that we be able to ask how we might change circumstances to get a favorable decision the next time. Moreover, the ability to change circumstances (a better education, improved credentials) should not be limited to only those with access to expensive resources. In other words, \emph{recourse} for negative decisions should be considered a desirable value that can be equalized across (demographically defined) groups. This paper describes how to build models that make accurate predictions while still ensuring that the penalties for a negative outcome do not disadvantage different groups disproportionately. We measure recourse as the distance of an individual from the decision boundary of a classifier. We then introduce a regularized objective to minimize the difference in recourse across groups. We explore linear settings and further extend recourse to non-linear settings as well as model-agnostic settings where the exact distance from boundary cannot be calculated. Our results show that we can successfully decrease the unfairness in recourse while maintaining classifier performance.